* Examines the different types of batteries and their capabilities
* Covers science, applications, reliability, and safety
* Explores new and future technologies, including lithium ion and nanotechnology

The TAB Battery Book
An In-Depth Guide to Construction, Design, and Use

Michael Root
Foreword by Dr. Ralph J. Bradd
The TAB™ Battery Book
About the Author

Michael Root, PhD, is a battery electrochemist with over 20 years of battery research and development experience. He contributed to the development of battery technology for diverse applications like implantable medical devices and consumer electronics. His work may be found in patents, technical papers in peer-reviewed journals, and a book chapter on battery technology. Additionally, he wrote a number of articles for various general science publications.
The TAB™
Battery Book
An In-Depth Guide to
Construction, Design, and Use

Michael Root
Contents at a Glance

Part I Battery Basics

1. Why We Need Batteries .. 3
2. The Many Uses of Batteries ... 7
3. The History of Batteries .. 13
4. Basic Physics and Chemistry ... 35
5. The Science of Batteries ... 49
6. Battery Engineering Designs ... 71
7. Battery Performance .. 83
8. Battery Reliability and Safety 105

Part II Battery Technologies

9. Primary Batteries ... 123
10. Rechargeable or Secondary Batteries 157
11. Charging Rechargeable Batteries 183
12. Selecting the Right Battery .. 195
13. The Future of Battery Technology 207
A. Battery Resources .. 219
 Glossary ... 227

Index ... 235
This page intentionally left blank
Contents

Foreword .. xi
Introduction .. xiii

Part I Battery Basics

CHAPTER 1 Why We Need Batteries ... 3
 - Chemical Energy Storage Compared ... 5

CHAPTER 2 The Many Uses of Batteries .. 7
 - Portable Consumer Devices ... 7
 - Medical Devices .. 8
 - Electric Vehicles ... 9
 - Large-Scale Electrical Energy Storage .. 9
 - Space .. 10
 - Military ... 10

CHAPTER 3 The History of Batteries ... 13
 - Electrostatic Energy ... 14
 - Electrochemical Energy .. 16
 - Improvements in Battery Technology ... 19
 - Engineering Improvements to Volta's Battery .. 19
 - Further Improvements to Volta's Battery .. 22
 - Oxidizing Cathode Materials .. 23
 - Continued Development of New Active Electrode Materials 26
 - Primary Batteries ... 26
 - Solid Cathode Materials .. 26
 - The Dry Cell .. 28
 - Alkaline Batteries .. 29
 - Lithium Batteries ... 31
 - Secondary Batteries ... 31
 - Battery Time Lines ... 34
CHAPTER 8 Battery Reliability and Safety 105
Reliability ... 105
Measuring Variability .. 106
Assessing Reliability ... 110
Accelerated Testing ... 116
Safety ... 118

Part II Battery Technologies

CHAPTER 9 Primary Batteries ... 123
Batteries with Aqueous Electrolytes .. 124
Leclanché Zinc-Carbon and Zinc-Chloride 126
Alkaline Zinc–Manganese Dioxide ... 129
Zinc-Air ... 131
Zinc–Silver Oxide .. 135
Zinc–Mercuric Oxide ... 138
Reserve Batteries .. 140
Batteries with Nonaqueous Electrolytes 141
Lithium–Thionyl Chloride, Lithium–Sulfuryl Chloride and Lithium–Sulfur Dioxide ... 143
Lithium–Manganese Dioxide .. 146
Lithium–Carbon Monofluoride ... 146
Lithium–Iron Disulfide ... 150
Lithium-Iodine .. 150
Lithium–Silver Vanadium Oxide ... 152
Lithium–Copper Oxide ... 155

CHAPTER 10 Rechargeable or Secondary Batteries 157
Batteries with Aqueous Electrolytes .. 159
Lead Acid ... 161
Nickel–Cadmium .. 166
Nickel–Metal Hydride .. 170
Alkaline Zinc–Manganese Dioxide ... 173
Batteries with Nonaqueous Electrolytes 174
Lithium Ion ... 175
Lithium Metal ... 179
Comparing Rechargeable Batteries .. 182

CHAPTER 11 Charging Rechargeable Batteries 183
Safe Charging .. 184
The Charging Process .. 185
Charging Considerations ... 186
Charge Rate ... 187
Charging Methods .. 188
Foreword

The TAB Battery Book enables the reader to understand in simple layperson terms the complex operations that occur inside a battery in order to generate electrical power on demand. The author offers simple, easily understandable explanations of the complex chemical processes that occur inside a battery. The book is written to provide the typical reader with a working relationship with the batteries he or she uses in everyday life.

The author starts at the very beginning with fundamental descriptions of the Volta pile and continues with the Leclanché 1.5-volt primary battery for flashlights and early portable radios. He goes on to describe the rechargeable lead acid 2.0-volt battery that is now common to most automobile operations. Today, new high-energy systems find wide application, especially the lithium-ion battery with the very high energy density needed to power mobile phones and portable computers, and readers will find that these systems are well covered.

Batteries are capable of very efficient direct energy conversion and can deliver about 95 percent of the contained energy to useful work, compared to an internal combustion car engine, which converts in the range of 25 percent of the energy stored in gasoline to useful energy in propelling the car. An electrical generation plant that converts coal to electricity operates at about 40 percent efficiency.

Batteries are an integral component of our daily lives, whether in mobile phones, portable computers, starting your car engine, or powering the satellite that brings radio communication signals down to earth. The various battery systems are discussed and explained in language that everyone can easily understand.

The reader should find this book to be a valuable resource.

Ralph J. Brodd
President of Broddarp of Nevada, Inc.
The invention of the battery by Alessandro Volta over 200 years ago was one of those innovative leaps in technology that occur from time to time. Almost immediately after a letter from Volta describing his work was delivered to the Royal Society of London in 1800, the battery had a significant impact on science and technology.

Before the battery, electrical phenomena had to be studied using electrostatic sources. Electricity could be generated by friction (called triboelectric charging), such as rubbing together amber and wool, or harvested from natural sources, like lightning. The Leyden jar, a type of capacitor, was developed as a way to store electrical energy for later use.

The electrostatic energy produced from such sources could only be delivered in short bursts. This was not a practical way to deliver electrical energy. A more sustained source of electricity was needed.

The conversion of chemical energy to electrical energy accomplished what electrostatics could not. Assemble the right chemical substances in the right way and a controlled, sustained way of producing electricity can be available to almost anyone.

At first, batteries were used as a tool to study electricity and electrochemistry. The great English scientist Michael Faraday advanced our knowledge of electrochemical reactions. Faraday’s mentor Humphry Davy discovered several new elements by electrochemical means using batteries as a power source.

It wasn’t long before batteries were developed and commercialized to provide electricity for a number of different applications, like railway signals and telegraphs. As early as 1804, Charles Henry Wilkinson offered “different Galvanic Apparatus and Instruments” for sale on “moderate terms.” A battery with fifty three-inch plates sold for five guineas. In the years before the invention of the electrical generator and construction of the electrical power distribution grid, battery installations provided electrical power. Some of the batteries developed in the nineteenth and early twentieth centuries we still use today—particularly lead acid, nickel-cadmium, and zinc-carbon batteries.

Many of the technologies we rely on today are enabled by batteries, including cellular phones, laptop computers, cars, and implantable pacemakers. The variety of battery types, sizes, shapes, and performance characteristics is vast. A complete description of any one of the batteries available today could fill a book on its own.
However, the intent here is to provide an overview of batteries from a number of different perspectives—how we use batteries, the historical foundations of today's battery technology, the scientific and engineering building blocks of batteries, different types of batteries (at least the more common ones), and some future directions of battery technologies. There should be something here for engineers, scientists, hobbyists, and students wanting to learn the basics of how batteries function and how to select the right battery for an application.

The idea for this book derives from a university professor I know who asked me to recommend a book to be used as supplemental course material for her course on electrochemical power sources. I had also been trying to think of ways to help provide information regarding battery technology to engineers who design batteries into their devices and those who procure batteries for the device design engineers. There are plenty of excellent reference books and specialized books aimed more at battery researchers and developers, but most of the more general battery books available are now out of print. So, *fiat liber*.

The book is divided into two sections: “Battery Basics” and “Battery Technologies.” The former discusses some of the general battery chemistry and engineering. The latter is a rundown of the more common battery technologies. A glossary and selected battery resources are provided at the end. The structure of those chapters devoted to the more technical aspects of battery science and engineering start with some basic information and go into more detail as the chapter progresses.

There are many books regarding battery science and technology that have been written since the early 1800s. A few of the more recent books providing information you may find useful include the outstanding reference book *Handbook of Batteries* edited by David Linden and Thomas B. Reddy, *Modern Batteries* by Colin A. Vincent and Bruno Scrosati, *Understanding Batteries* by R.M. Dell and D.A.J. Rand, and *Industrial Applications of Batteries* edited by M. Broussley and G. Pistoia. Also, Henry Schlesinger's *The Battery*, published during the writing of this book, gives an engaging account of the development of battery technology and the applications that use them.
The TAB Battery Book provides a comprehensive introduction to battery technology. Written for electronics hobbyists, inventors, researchers and developers, and science and engineering students, the book explains the theoretical underpinnings of battery technology, explores how different types of batteries work, and examines the advances in materials science and manufacturing methods that are being used to create batteries as exceptional energy sources for a wide variety of devices. Cost-effective, long-lasting portable energy sources are essential. Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel.