Incompatibility of Atheism and Science

A Thesis Submitted
To the Teacher and Students of Advanced Apologetics

By

Tolu Asade
May 2019
Table of Contents

Introduction 3

Early Science 5
 Ancient Civilizations 5
 Greek Philosophers 5

The Scientific Revolution 8
 Nicolaus Copernicus 8
 Tycho Brahe and Johannes Kepler 9
 Galileo Galilei 10
 William Harvey 12
 Francis Bacon and Renè Descartes 13
 Robert Boyle 14
 Sir Isaac Newton 15

Rise of Atheism 18

Science in the 18th and 19th Centuries 20
 Benjamin Franklin 20
 Charles Darwin 20
 Gregor Mendel 23

20th Century and Beyond 24
 Albert Einstein 24
 Big Bang Theory 25
 The Four Horsemen 26

Harmony Between Religion and Science 28

What Is Science? 29

Laws of Logic 32
 Law of Identity 32
 Law of Noncontradiction 33

Transcendental Argument 35
 Presuppositions of Both Sides 35
 Universal Laws 36
 Where do they come from? 37

Atheism and Science: The Real War 39
 Options for Atheists 40
Rebuttals

Science and Religion are Incompatible
How Did God Make the Laws?
Transcendental Nature of the Laws of Logic
Repeated Observation
Applying the laws to God

Conclusion

Bibliography
Introduction

Ever since the Scientific Revolution, the idea that religion and science are at war with each other has been commonly accepted, but rarely do people question whether the war truly exists in the first place. Science contributes towards general revelation, providing information about nature and the physical world, while religion itself provides specific revelation, talking about the magnitude of God; with this in mind, religion and science cannot conflict, instead they compliment each other quite nicely. The discoveries made through science are used as a way to further glorify God.

The true conflict lies between atheism and science, which may at first seem contradictory given that science is an atheist’s best tool in their attempts to dismantle religion. However, it appears that no one is considering how science works in the first place or taking the time to acknowledge its underlying reliance on a supernatural being. If science assumes the existence of an orderly universe, which in turn assumes the existence of an orderer, science would then have to depend on the existence of an omnipotent being. Once this thesis is proven to be true, atheists will be forced to give up their stance on the existence, or moreso the nonexistence, of an omnipotent being or somehow try to practice science without logic (a fruitless attempt). Thus, the new war that emerges is one between atheism and science.

This thesis will begin by conducting a thorough analysis of the relationship between science, religion and atheism from a historical perspective, citing the scientific revolution as the beginning of significant division between religion (specifically Christianity) and science as philosophers and scientists began to draw conclusions that were thought to be independent from God. Then, a modified version of the transcendental argument will be used to justify the
assertion that were it not for the existence of God, it would be impossible to use science to prove anything.
Early Science

Ancient Civilizations

The human intellect and curiosity that propels scientific discovery forward has been around for as long as humans have been observing and analyzing their surroundings, with the earliest documentation of scientific studies being located in ancient civilizations such as Mesopotamia, Egypt and China. Their observations in astronomy, mathematics and medicine provided the foundation that established modern science. The twenty-four hour day observed by the Egyptians, the sexagesimal number system and calendrical system established by the Mesopotamians, and China’s advancements in the medical field through the practice of acupuncture are just a few inventions that are still visible today.¹

As early as 2000 BC, religion was very prominent in these ancient civilizations, as it was used as a way to push science forward; in addition to improving their chances at survival, Egyptians, Babylonians and Chinese civilians ventured into scientific discoveries in order to find out more about their gods or to find new ways to appease them. For example, Mesopotamians built the pyramids and started the mummification process because they believed their Pharaohs were divine and wanted to preserve them for the afterlife, which enabled them to make discoveries about internal organs within the human body.²

Greek Philosophers

Around the same time that the ancient civilizations previously mentioned were exploring their surroundings, Greek men were indulging in natural philosophy—scientific study through

² William Bynum, A Little History of Science (Cumberland: Yale University Press, 2014), 2, 4-5.
the observation of natural phenomena. Although many of the discoveries in Greece were similar to those in Mesopotamia and Egypt, the thinking behind them was far different; Greek philosophers focused more on the numbers and geometry behind the phenomena they observed rather than practical applications because they wanted to know the why.\(^3\) This Greek mindset was seen in how the number pattern present in the Pythagorean theorem was observed in Sumerian cuneiform many years prior to Pythagoras, but Pythagoras was the one to take the initiative and establish the proof.\(^4\)

In addition to Pythagoras, there were many Greek men that have contributed to the progression of science: Thales was said to be the first Greek philosopher to move away from supernatural explanations when it came to understanding the natural world;\(^5\) Aristotle, the father of logic, concluded through his observations that Earth was composed of four elements—fire, air, earth and water—but the planets beyond earth, the heavenly bodies, were composed of a fifth element called *ether*, that was unchanging and had perfect circular motion (which was proven false during the Scientific Revolution);\(^6\) and Hippocrates, the father of medicine, contributed the Hippocratic Corpus, a detailed guide to medicine during his time.\(^7\)

The imperfection of the Olympian gods spurred Greek philosophers to seek answers to their scientific inquiries outside the supernatural realm. They were in no way denying the existence of their gods, but rather simply looking for practical explanations to the phenomena they observed. In this instance, religion conflicted with science because the practice of keeping

multiple gods was illogical; there were different rationalities that people would follow depending on the god that they preferred. Greek thinking was later reunified by Aristotle and his uncaused cause theory, which was later referred to as the second cosmological argument.⁸

⁸ The cosmological argument is a proof for the existence of God that is basically summed up as (1) everything needs a cause (2) the universe needs a cause (3) God is the uncaused cause of the universe, meaning He does not have a cause Himself. Aristotle’s uncaused cause is only one form of the proof, which is later expanded upon by Thomas Aquinas. Objections are raised regarding this proof because if everything needs a cause, then God would need one too.
The Scientific Revolution

Scientific advancements continued to inch forward, but it was not until the Scientific Revolution that modern science, as is seen today, began to surface. Although this ‘revolution’ actually took about 200 years to be completed, the sheer abundance of discoveries were incomparable to previous breakthroughs. The discoveries in the Scientific Revolution can be characterized by the accomplishments of the following famous scientists.

Nicolaus Copernicus

Copernicus sparked the Scientific Revolution through his theory of heliocentricity, which was further expanded upon by Galileo Galilei. Prior to Copernicus, a combination of Ptolemy and Aristotle’s views that the earth was the center of the universe was widely accepted. When embarking on some research himself, Copernicus found that there were many disagreements and inconsistencies regarding the exact structure of the universe, which he found to be unsettling due to the fact that the same universe was supposed to be created by an orderly Creator. Religion propelled Copernicus’s curiosity forward and sparked the beginning of what was considered a monumental astronomical discovery.

In 1543, Copernicus published his findings in *On the Revolutions of the Celestial Spheres*, where he explained that the earth revolved around the sun and also rotated on its own axis, a system that offered an explanation for the seemingly irregular movements of the other planets as well as why the sun appeared to move around the Earth. Unfortunately, there was

not much proof for a heliocentric system; Copernicus’s only argument for it was that the mathematics were simpler.11

As one would expect, objections arose from geocentric supporters, declaring that no one was able to see or feel the earth move, and without any evidence on Copernicus’s side, those objections prevailed. The Catholic Church officially banned \textit{On the Revolutions of the Celestial Spheres} in 1616, citing it as a book containing heresy due to the fact that the Church had interpreted Scripture to say that the earth was the center of the universe.12

The conflict between Copernicus and the Church was often cited as the beginning of the war between Christianity and science. However, it was the belief in an orderly, omnipotent being that propelled the discovery in the first place. In this instance, the breakthrough of a heliocentric system owed its existence to religion instead of religion inhibiting its potential.

\textit{Tycho Brahe and Johannes Kepler}

Nicolaus Copernicus had made the heliocentric theory open to the public, yet he had no substantial proof for believing the sun to be the center of the universe rather than the Earth. It was not until Tycho Brahe and his discoveries that evidence supporting the theory began to emerge. Brahe had the fortunate experience of witnessing a supernova and a comet in the sky, a rare opportunity since telescopes were not yet invented, and by measuring how far away these anomalies took place from Earth, he was able to conclude that comets and stars existed beyond the moon, disproving the notion that heavenly bodies were changeless.13

11 Pearcey and Thaxton, \textit{The Soul of Science}, 65.
13 Morus, et al., \textit{The Oxford Illustrated History of Science}, 155.
Even though Brahe’s discoveries brought society one step closer to accepting Copernicus’s theory by eliminating parts of the Aristotelian system, Brahe himself did not completely believe in heliocentricity. He was willing to admit that the planets may revolve around the sun but remained steadfast on the idea that simultaneously, the sun continued to revolve around the earth.\(^{14}\)

Hastening the dismantling of the Aristotelian system, Kepler proved that the heavenly bodies travelled in an elliptical orbit instead of a perfect circular one. He also suggested that instead of moving at a constant speed, the planets in these orbits accelerated and decelerated in predictable patterns, which was later explained by Newton through his study of gravitation. In 1609, Kepler published his laws of planetary motion in *Astronomia Nova*, which are still applied today in modern physics.\(^ {15}\)

Galileo Galilei

Galileo Galilei, borrowing from Copernicus’s heliocentric theory, sparked controversy not only in the religious world among church leaders but also in the scientific realm among the scientists that regarded Aristotelian physics as law. The Italian mathematician made his initial discoveries by being the first to direct a telescope, magnified by himself, toward space. All of his observations provided proof for the idea that Earth was not the center of the universe; the moons on Jupiter meant that not all heavenly bodies revolved around Earth; the mountains and valleys in the moon suggested that heavenly bodies were imperfect—just like Earth; and the

\(^{14}\) Spangenburg and Moser, *From Ancient Greeks to the Scientific Revolution*, 44.

regular movement of blemishes spotted on the sun proved that the sun rotated.16 It was not so much Galileo’s observations that received attention from the Church and other scientists of the time, but rather the conclusion that he came to: Earth revolves around the sun in a heliocentric system, like Copernicus had first suggested.

Galileo published his findings in \textit{The Messenger of the Stars} in 1610. Five years later, Galileo made his first appearance before the Roman Inquisition regarding the spots he saw on the sun. Bellarmine, a cardinal of the Catholic Church, forbid the Italian astronomer from teaching or speaking of a heliocentric system. At the time, Galileo promised to not teach his findings, but it was obvious through his work that he did not comply.17

It was not until Galileo published \textit{Dialogue on the Two Chief World Systems} that the Church took active steps to repress his discoveries. In order to publish the book in the first place, Galileo agreed to only speak of his theory as a hypothesis—not the truth. The book is written as a discussion between characters that represent the Aristotelian view and the newly dubbed Galilean view. However, despite the literal words in the beginning that stated his theory was only a hypothesis, the actual content of Galileo’s book proved otherwise when he named the character that represented the Aristotelian system \textit{Simplicio}, which means stupid.18 Unsatisfyingly, Galileo was unable to evade The Church and a Papal Inquisition took place in 1633 where he was forced to recant his writings and placed on house arrest, where he remained until he died.19

16 Andrew D. White, \textit{History of the Warfare of Science with Technology in Christendom} (Outlook Verlag, 2018), 127-128.
17 White, \textit{History of the Warfare of Science with Technology in Christendom}, 133.
19 Dowe, \textit{Galileo, Darwin, and Hawking}, 31-32.
The Church’s opposition toward the heliocentric theory stemmed from the portion in Joshua when the book’s namesake commanded the sun to stand still as opposed to the earth to stand still. It was not just the Catholic Church that had a problem with Copernicus and Galileo’s conclusions; Martin Luther, on behalf of the Protestant denomination, also spoke out against any theory that called Genesis into question because if one thing was interpreted wrong, the entire book could be called into misinterpretation. The previous belief held was that heaven and planetary bodies existed within the firmament of the sky; the heliocentric theory put earth in that firmament, and it was as if humans were being placed in the realm of God.

Galileo himself was not an atheist, nor was he a heretic as the Church proclaimed. He believed that whatever scientific studies revealed to be true could never contradict Scripture, but provide a new way to interpret it, but the conflict between Galileo and the Church is still the most cited source in the discussion of Christianity and science being at war, even though the mere idea does not come from the religion of Christianity itself but rather the misguided actions of the Church. The church responded so harshly because new theories were being presented, and they needed more proof before they changed the dogmatic thoughts that they had grown accustomed to.

William Harvey

A regular occurrence in this era in regard to scientific breakthrough was the dismantling of previously accepted theories, and the same is seen with William Harvey and the preconceived

20 Joshua 10:12-13
22 Dowe, Galileo, Darwin, and Hawking, 38.
notion of blood and its contents. According to the theories of Galen, a Greek physician, it was previously held that there were two kinds of blood in the body, blood from the liver and blood from the heart, yet when Harvey tasted the two, they tasted the same. By way of dissection, vivisection and observing the valves in the heart, Harvey came to the conclusion that the heart was a muscle that was responsible for pumping blood in one direction, a very important distinction at the time, and that the same blood was circulated throughout the human body, from the arteries to the veins.

He published his findings in *On the Movement of the Heart* in 1628, and the results for the world of medicine were monumental. It introduced the idea of injecting medicine into the blood in order to administer it to the entire body and started physicians down the road of blood transfusions. Because of Harvey, physicians after him were encouraged to take a closer look at the human body and discover exactly what is happening in the lungs, stomach, brain or other internal organs.

Francis Bacon and Renè Descartes

Bacon famously coined the phrase “Knowledge is power” and after classifying all the branches of learning, was a firm believer in science being the best way to expand that knowledge. Bacon called for three main practices within the scientific field: (1) precise and detailed writings, so that new discoveries could be easily interpreted by other scientists (2) open minds going into experiments, which became known as the method of induction and (3) several repetitions of experiments to ensure accurate results. He also laid out a scientific process that

essentially boiled down to hypothesis, experiment, and conclusion—the framework of the scientific method.26

On the other hand, Descartes advocated for a method of deduction, which involved doubting all previous knowledge during an experiment in order to produce conclusions untainted by prej udgement.27 His way of thinking allowed for scientists to break free from the restraints of old theories and come to new, accurate results that were actually supported with evidence. Descartes accomplished much in his lifetime, such as uttering the famous phrase, “I doubt, I think, therefore I am,” resulting in the philosophy of the separation of mind and matter or \textit{dualism}.28 In his metaphysical research of the mind, he came to the conclusion that human intellect is reliable because it was created by God, showing once again, how religion has served as a vital part in scientific inquiry.29

\textit{Robert Boyle}

Although Boyle is known most for his contributions to modern chemistry, he first made his name known by studying the air around him. He speculated that if space existed between particles of matter, which was observed when the same amount of liquid took up more space when transformed to a gas, then a vacuum had to be possible, creating a contradiction to the previous belief held by Descartes that a vacuum in nature was impossible. By using the air pump he invented to remove air from a closed vessel, Boyle’s theory was proven true when the

26 Susan W. Bauer, \textit{The Story of Science: From the Writings of Aristotle to the Big Bang Theory} (New York, NY: W. W. Norton & Company, 2015), 58.
28 Bynum, \textit{A Little History of Science}, 76-77.
resistant pump seemed to have removed all the air. Boyle published his conclusions in *New Experiments Physico-Mechanical: Touching the Weight of the Air and Its Effects*, which contained the mathematics for the relationship between gases and pressure that would later become known as Boyle’s Law.\(^{30}\)

Before Boyle’s time, there was no such thing as chemistry; instead, scientists immersed themselves in alchemy, the chemistry of the past. Serving as the foundation of this practice was Aristotle’s theory that Earth was composed of four elements—fire, earth, air and water—yet when Boyle produced smoke from burning a stick or melted pure gold, he found that the product of the experiments could not be classified as fire, earth, air or water. Boyle wrote his second book, *The Sceptical Chymist*, explaining his experiments that disproved Aristotle’s theory, but did not impose his theory of *corpuscles*, a new unit of matter, because he knew he had no evidence. The book presented different points of view on the matter as characters engaging in dialogue, similar to Galileo’s *Dialogue*.\(^{31}\)

Sir Isaac Newton

Despite being a fairly private individual, Newton soon rose in status for his accomplishments across mathematics, physics and optics. The well-known story of how Newton noticed an apple falling from a tree preludes the establishment of the three laws of motion: objects in motion stay in motion unless acted upon by an external force (the law of inertia), force is equal to the product of mass and acceleration, and every action has an equal and opposite reaction. Within these laws, Newton was also the first person to differentiate between weight

\(^{31}\) Bauer, *The Story of Science*, 86.
and mass, weight being the effect of the force of gravity on an object and mass being the amount of matter in the object. He used this train of thought to calculate the gravitational force between Earth and the moon32 and accurately predict the presence and size of a bulge on Earth’s equator.33

Newton was also responsible for coming up with calculus, at the time calling it the study of fluxions. He started out in parametric form, with time as the variable, and then eventually progressed to fluents and fluxions, terms that are synonymous with velocity and derivatives.34 The reason for creating this new form of mathematics was to be able to account for the small, continuous changes that are present when dealing with the force of gravity.35 Because of fluents and fluxions, Newton was able to provide more answers for how physics worked in space.

After years of observing and keeping his discoveries to himself, Newton eventually published his findings in \textit{Principia}, a book that was not easily understood by many in Newton’s time.36 His findings were finally able to explain why planets orbited in an elliptical motion and how the calculations proved a heliocentric system. As part of his reclusive tendencies, Newton deliberately made his book obscure and difficult to understand to avoid interference from other scientists.37

Newton also made huge strides in regard to optics by discovering that sunlight was not simply white light or the absence of color but, by conducting an experiment with a prism in a

32 The force of gravity between two objects is equal to the product of the two masses over the square of the distance between the two.
33 Spangenburg and Moser, \textit{From Ancient Greeks to the Scientific Revolution}, 72-73.
35 Bauer, \textit{The Story of Science}, 98.
36 Bynum, \textit{A Little History of Science}, 91.
37 Bauer, \textit{The Story of Science}, 97-99.
dark room, found it to consist of every color in the rainbow. In 1704, the Cambridge educated mathematician published all his observations on light in *Opticks*.38

Newton was a member of the faith and believed that the only explanation for the phenomena he observed was a God who was a great engineer.39 His impressive discoveries did not make him stray further from the idea of a supernatural creator but brought him closer; specifically, observations of the lens and pupil, designed so perfectly for vision, convinced him that this world and everything in it did not come together by chance and that there had to be a Being responsible for it all.40

38 Spangenburg and Moser, From Ancient Greeks to the Scientific Revolution, 68.
Rise of Atheism

For centuries, supernatural entities ranging from an all powerful monotheistic being to numerous woodland spirits had been ingrained in the minds of every individual. However, it wasn’t until Greek philosophers began to question the morality of the Olympus gods that atheism, or atheistos, someone who denies the religion of Athenians, started becoming more prominent.

Centuries later, in the Western world, Christianity was an integral part of society, so much so that anyone who mentioned the idea of God not existing was ostracized and ridiculed. It was not until Ludwig Feuerbach that the idea of a Godless world started to become more mainstream. He viewed Christianity as a delusion that humans created to trivialize death and that the only way to live life to the fullest was to forget about the supposed immortal life humans could experience in another world. In *The Essence of Christianity*, Feuerbach went as far as to define God as a human creation and propose that the entire belief was really centered on humans.

Karl Marx agreed with the works of Feuerbach but took it a step further by declaring that religion, and Christianity specifically, is a result of the social injustice present in modern society.

Atheists of the 19th century made it clear that their stance was the disbelief in God rather than denying His existence so that the burden of proof rests on Christians to confirm it. In order to distinguish this belief, or disbelief, from those that deny the existence of God, Thomas Huxley created the term *agnostic*, describing people who were suspicious but not objecting the claims of

42 Ibid., 54-56.
43 Ibid., 64.
religion.\footnote{McGrath, \textit{The Twilight of Atheism}, 92-93.} Another philosopher, Friedrich Nietzsche, presented the position that since Western culture no longer depended on God and, slowly but surely, people were looking for answers outside the restraints of theology, God is dead and society is responsible for killing Him.\footnote{Ibid., 149-150.}

Regardless of whether someone identified as an agnostic or atheist, science started being considered as a tool for the non-believer because it proved a functioning world without the existence of God to explain occurrences. Scientific study went from revelations about God’s creation to prove that God did not exist, and the idea of a war between Christianity and science became more prominent as more discoveries came about.
Science in the 18th and 19th Centuries

The achievements of the Scientific Revolution began winding down toward the end of the 18th century, but that does not mean that discoveries stopped there. With newer technologies and the knowledge of the researchers before them, scientists of this time period were able to make huge contributions to the world of science.

Benjamin Franklin

Benjamin Franklin was well known for his involvement in America’s quest for independence, participating in the Sons of Liberty, and writing the Declaration of Independence, but after helping America vanquish its British enemy, Franklin devoted his time to the field of science, making discoveries and inventions to improve society’s understanding and standard of living. Besides creating bifocals and the rocking chair, Franklin is well known for ‘discovering’ electricity, or more accurately, providing an explanation for the phenomenon. Through his key and kite experiment, which involved flying a kite in a storm with a key attached to the end in hopes of conducting electricity from the lightning strikes, he initiated the exploration of electricity for scientists like Alessandro Volta or André-Marie Ampère to follow in his footsteps.46

Charles Darwin

Before Charles Darwin entered the scientific realm to contribute his theory of evolution, his grandfather Erasmus Darwin already formulated his own theory on the evolution of plants

46 Bynum, A Little History of Science, 95-98.
and animals. While Erasmus incorporated his ideas into his poetry, Charles would be the one to provide the evidence and reasoning for an evolutionary theory.

After finishing school in 1831, Darwin embarked on a five year journey aboard the HMS Beagle, exploring South America, Australia and the Galápagos Islands. During the trip, he documented his observations of plants, animals and the cultures he encountered in journals and eventually published them in The Voyage of the Beagle. On his journey, prior to landing in the Galápagos, Darwin had already noticed that fossils and their living counterparts were similar but not identical. Once he was in the islands, he observed finches on separate bodies of land that were very similar, yet classified as different species. Darwin began speculating on the idea that the finches, originating in South America, could have flown to the Galápagos and then adapted to the environmental circumstances of each specific island.

From his observation of the finches, Darwin came up with the concept of natural selection. The process explained how some offspring inherit favorable traits from their parents that enable them to survive, and since the organisms with those traits are able to live longer and produce more offspring, those traits will be present in the next generation. It was the slow process of natural selection that created new species, as seen with the finches from the Galápagos, causing evolution.

Darwin originally kept his theories to himself because he wanted to be absolutely sure, but when other scientists started to independently come to the same conclusions that he did, he rushed to get On the Origin of Species published. Darwin’s work provided the world with a

47 Bynum, A Little History of Science, 147.
48 Ibid., 148.
49 Morus, et al., The Oxford Illustrated History of Science, 296.
50 Bynum, A Little History of Science, 150.
better understanding of what species were and how they were defined; they were changing categories that were created when older species experienced variations instead of fixed divisions based on characteristics.51

Twelve years later, Darwin applied the same theories present in \textit{Origin} to the human species and released it in \textit{The Descent of Man}. Now, the theory of evolution was explicitly applied to mankind and opposition arose within the Christian community. Suggesting that humans came from monkeys removed them from their special place in the natural order and brought into question the presence of the soul, which is why Darwin was accused of limiting God’s power and contradicting Scripture.52 Christians would shy away from the idea of evolution, holding fast to the creation story found in Genesis.

Ironically, as a previous believer, Darwin’s initial intentions were to become a minister in the Anglican Church. Even after he decided to leave the faith, Darwin does not completely reject the idea of a divine Creator as so many assume; throughout \textit{Origin}, he leaves room for the notion that God could be behind natural selection. In letters to Asa Gray, a Christian biologist who believed Christianity and natural selection were compatible, Darwin confessed that when looking at the world, it is difficult for him to believe that it was all a result of a “brute force.”53 Still, others continued to use Darwin’s studies to provide an alternate explanation to intelligent design, leaving God out of the picture completely.

51 Bauer, \textit{The Story of Science}, 171.
52 White, \textit{History of the Warfare of Science with Technology in Christendom}, 92.
53 Dowe, \textit{Galileo, Darwin, and Hawking}, 125-126.
Gregor Mendel

Mendel was a friar who was experienced in the artificial breeding of flowers, and it was through that practice that he began to notice some patterns. Darwin was unable to explain the variations in inheritance; he knew that some genes, or gemmules, were passed down but he did not know why or how. Mendel provided an answer to Darwin’s inquiry through experimentation of the hybridization and cross-fertilization of sweet peas. After growing multiple generations of sweet peas and recording the ratio of specific traits found in the offspring, Mendel was able to distinguish between dominant and recessive characteristics. He also established the law of segregation and the law of independent assortment which are both still used in genetics today. It should be noted that Mendel’s religious position did not prevent him from making discoveries and becoming the father of modern genetics.

54 Bauer, The Story of Science, 175.
20th Century and Beyond

Science in the 20th century and beyond continued to build on the revelations of the past. During this time, more than ever, religion was separated from scientific inquiry as humans were able to discover more about the world, the human body and the universe without God. Atheism increased in popularity, especially with the presence of The Four Horsemen: Richard Dawkins, Sam Harris, Christopher Hitchens and Daniel Dennett.

Albert Einstein

Einstein first earned his fame from his theory regarding the photoelectric effect when he was able to use Planck’s quantum theory to explain why when light hits a metal, electrons are produced. He came to the conclusion that light travels in waves and particles and for his explanation of the phenomenon that had been observed but not understood for so long, Einstein received a Nobel prize in physics. His work on the photoelectric effect eventually gave way to the study of quantum mechanics—physics at the subatomic level.

Einstein’s two theories of relativity, special and general, both involved the prominent equation that is now familiar, albeit not necessarily understood, to most: $E = mc^2$. The special theory came about from the apparent contradiction of the principle of relativity, which stated that the laws of physics always apply regardless of the reference point, and the speed of light, which is said to be constant; according to the principle of special relativity, two separate observers would witness light moving at different speeds, making it appear to be inconstant.

56 Planck’s theory states that one photon of light carries one quantum of energy and it is that quantum of energy that is transferred to the metal and causes an electron to be released.
57 Spangenburg and Moser, *The History of Science from 1895 To 1945*, 28-29.
reconciled the two ideas by stating that time is relative: the faster an object moves, the slower time flows.\footnote{Spangenburg and Moser, \textit{The History of Science from 1895 To 1945}, 30-33.} In his general theory of relativity, Einstein provided an explanation for the shift of the perihelion of Mercury that was too big to attribute to gravity\footnote{Due to a curve in spacetime, Newton’s gravitational equations could not be applied to Mercury’s motion and a new equation had to be derived.} and accurately predicted that due to the sun’s large mass, starlight would be bent towards it.\footnote{Bauer, \textit{The Story of Science}, 223.} Einstein’s general theory provided a more correct model of gravity that could be applied across the entire universe instead of within smaller distances like Newton’s theory provided.

\textit{Big Bang Theory}

Einstein’s theories of relativity suggested that there should be an observable redshift that is a product of the curved space-time, which would make it more difficult for light particles to move away, requiring more energy and decreasing their emitted frequency. By studying a nebula known as M31, Edwin Hubble found that not only was it located outside of the Milky Way, but the light from the nebula proved that redshift did occur and that other galaxies are moving \textit{away} from this galaxy.\footnote{Ibid., 239-241.}

With news that the universe is expanding, logically it came that, going backwards, there was a point where all matter was gathered together and began expanding; this point is known as the \textit{singularity}.\footnote{Ibid., 243.} That singularity ceased with a sudden rapid expansion known as the Big Bang and has continued to expand at a slower rate. Steven Weinberg was the first to publish writings
on the subject in *The First Three Minutes* and many other scientists soon followed suit, a notable addition being Stephen Hawking’s *A Brief History of Time*.\(^{64}\)

Obviously, this theory did not sit well in the Christian community where God was considered to be the creator of the universe. In a similar pattern that was seen with Darwin’s theory of evolution, Christians rejected and attacked the Big Bang theory and its believers, claiming that they were once again trying to demote God from His position as the omnipotent maker.

The Four Horsemen

Dawkins, Harris, Dennett and Hitches had brought around a resurgence of atheism in what was dubbed the New Atheism Movement. The four men gathered together one evening in 2007 to have a discussion that was released to the public and titled “The Four Horsemen” (an allusion to the four apocalyptic horsemen present in the book of Revelation).\(^{65}\) In this discussion, the four men exuded overconfidence as they spoke about the faults and irrationality of religion, taking a moral stand to lead people away from such a harmful belief.

These four men held the strong belief that science explicitly dismisses faith and religion; Dawkins, an Oxford zoologist, repeatedly expressed that science “proves things” while religion only makes false claims. Dawkins drew a heavy focus to evolutionary biology and its ability to explain many phenomena. He was critical toward faith, referring to it as evil or an irrational belief\(^{66}\).

In his book, *The Blind Watchmaker*, Dawkins used evolutionary biology to discard the

\(^{64}\) Ibid., 248.

\(^{66}\) McGrath, *The Twilight of Atheism*, 94-95.
idea of intelligent design, labelling natural selection as the blind watchmaker because it does not have a plan or purpose.⁶⁷

The New Atheism Movement involved more debates and lectures that took place in an attempt to convince society that religion was a frivolous endeavor, earning a crowd of new followers. No one illustrates this more than Sam Harris, a neuroscientist, philosopher and fervent atheist with a Jewish mother and a Quaker father. Harris went on tours and records podcasts to spread atheism and informed people of the faults of religion. His written works included *Free Will, The Moral Landscape* and *The End of Faith*, which won him the PEN Award for Nonfiction in 2005.⁶⁸

Hitchens was a self-proclaimed socialist and Marxist and his main work was *God Is Not Great*. Similarly to Dawkins, Dennett also drew heavily from heavily evolutionary biology, which is seen in his book *Darwin’s Dangerous Idea*.⁶⁹

⁶⁷ Ibid., 108.
⁶⁹ McGrath, *The Twilight of Atheism*, 94.
Harmony Between Religion and Science

Religion and science have been interacting for centuries but not as opposing sides in a battle. Yes, scientists and believers have butted heads in some areas, but when looking closely at those instances, the fundamentals of religion never conflict with the fundamentals of science. At numerous points in scientific history, religion has actually propelled science forward, like when Copernicus was developing a heliocentric theory, eliminating the idea of a war between the two. Religion and science work hand in hand, with science serving as revelation of God through His creation and religion serving as revelation in the supernatural realm.

The real disagreement exists between the fundamentals of atheism and science. Science and the reasoning it employs attacks the very core of atheism by directly addressing the presuppositions present in the atheistic worldview, rendering atheists without a tool to disprove the existence of God. What atheists have taken for granted is now called into question and every argument they could possibly present is dismantled, leaving atheism and science incompatible.
What Is Science?

The word science comes from the Latin word *scientia*, which means knowledge. According to the Oxford English Dictionary, science is the systematic study of the physical world through observation and experiment. Merely observing occurrences in one’s surroundings and within the universe is not enough to constitute scientific thought; the overall process must be accompanied by analysis in order to equip people with an understanding of the world as well.

A beneficial illustration of how a scientific study takes place is found in the simple steps of the scientific method, a well-known process in the academic field, which was first introduced by Francis Bacon. First, in order to practice science, whether it be physical, biological or psychological sciences, one must make observations of their intended area of study; Newton observed gravity with the descension of an apple, Galileo observed moons on Jupiter and Darwin observed the finches of the Galapagos Islands. The next steps of the scientific method are to ask questions, form a hypothesis, test the hypothesis, analyze data and repeat the experiment until results are consistent. Not every experiment involves every step, but the scientific method serves as a general guideline for experimenters to come to logical conclusions.

In order for anyone to even attempt to study the natural world in the name of science, an assumption has to be made. Every single person, from believer to non-believer, assumes that the universe has order to it—that there are predictable patterns that every object must follow and that there is a practical explanation for every process that takes place. If one was foolish enough to claim that there is no order in the universe, then there would be no point in pursuing science. Not only would pursuing science be futile, but science in itself would not work; trying to understand biological or physical processes would be impractical because there are no regular
patterns for the processes to follow—the world and everything around it would be random and a prediction for one occurrence would have no bearing on another. It would be impossible to prove something or understand anything within this universe.

To further illustrate this idea, the simplest mathematical equation is presented: 1+1=2. This is known to be true and serves as the foundation for far more complex mathematical equations. 1+1 has always equalled 2; it has never been true that 1+1=3 or 1+1=24,631. If the universe lacked the uniformity and logic that science requires, 1+1 would almost never equal 2; there would be no reason for it to. And with the dismantling of a simple equation like that, all discoveries that depended on the fact that 1+1=2 would be destroyed.\(^{70}\)

Yet obviously, science is pursued because logical, predictable patterns do exist in this universe, and it is possible to understand them. The primary reason that Kepler was able to discover elliptical orbits was because the calculations he made of a planet’s orbit did not coincide with the orbits accepted at the time; the assumption that the universe has order to it and must follow patterns that are in this case dictated by mathematics allowed Kepler to discover orbits that follow logical patterns.

Another example of the predictability within the scientific field is the study of electrons. It is now a common accepted idea that electrons repel each other because of their negative charges, yet scientists have not actually tested every single electron in the universe—that is impossible. They have tested many electrons and were able to make a generalized statement for all electrons because no experiments have proved otherwise. Once again if there was no logic or order behind science and the processes within the universe, it would be irrational to assume that

\(^{70}\) I am fully aware that math is a human convention, created and dictated by mathematicians. However, the reasoning behind it is not a human convention (a belief that is expanded upon in the Transcendental Argument section), and it is that same reasoning that lends itself to the predictability of mathematics.
the experiments of some electrons apply to all electrons. With that example in mind, there must be order in the universe, not because humans will it to be orderly, but because of something greater than the human race— something greater than the universe itself.
Laws of Logic

The laws of logic (sometimes referred to as the laws of thought) are universal statements that serve as the foundation for rational thought. Although many like to attribute these laws to Aristotle, he in no way “discovered” or “invented” them (especially since the laws are not a human convention); rather he was the first to begin expressing them through his teachings.71

There are three basic laws of thought, and two of them will be discussed in the sections below. 72

Law of Identity

Every object that exists has an identity, that is it has characteristics and an “essence” that makes it what it is. For example, a bicycle has two wheels, a handlebar and pedals, a cube has 6 square faces, and a bird has wings, feathers and a beak. No one would say that a bicycle is a bird or that a bird is a cube because the individual characteristics of a bird don’t align with the identity of a cube or bicycle.

Put simply, the law of identity states that something is what it is and is not what it is not. It is often portrayed by the equation \(A = A \) and \(A \neq B \) unless \(B \) is identical to \(A \). Although it may seem like a simple and obvious observation, the law of identity can be taken further. If two things are said to be identical, then they must have identical properties and therefore can be substituted for each other.73 So if an object is said to be identical to fire, it can be assumed that it is scalding hot and can burn human skin on contact because of the law of identity.

72 The law of excluded middle is left out due to the fact that it is disputed among scholars, and it has many exceptions. This does not hinder any arguments pertaining to the laws of logic because the law of excluded middle is still good for general principle; it meets opposition when addressing more specific situations.
Sometimes, people try to evade this law by shifting the point of reference. The statement ‘the US is made up of 13 states’ was true in 1790 but is false now, and because of this, it might be said that the law of identity falls short. However, statements like these are classified as elliptical statements, meaning it is incomplete and only contains part of what the full statement should be. Expanding on the aforementioned example, the elliptical statement would be ‘the United States is made up of 13 states’, which is true only in the 1970s and the complete statement would be ‘the United States was made up of 13 states in the 1970s’, which was true then and remains true now.74 When the point of reference is held constant, the law of identity always holds true.

\textit{Law of Noncontradiction}

If someone were to say that their book is on the table and someone else responded with that same book is not on the table, one person would have to be incorrect; the book cannot be both on the table and not on the table at the same time. It is logically and physically impossible because of the law of noncontradiction.

This law is stated in different ways: something cannot be true and untrue at the same time or an item cannot be and not be in the same respect. Essentially, it boils down to two contradictory statements about the same object cannot both be true; so $A=B$ and $A\neq B$ cannot both be true statements.75 Another way to look at this law draws back to the example made earlier of $1+1=2$. If $1+1=2$, according to the law of noncontradiction, it cannot also equal 3 or 24,631 at the same time.

74 "Logic and The Laws of Thought." Quartz Hill School of Theology http://www.theology.edu/logic/logic7.htm. (accessed April 12 2019).

75 Ibid.
Some try to discount this law by presenting quantum mechanics as proof that the law does not always apply; in the instance of the theory of light, light is said to be a wave and a particle, meaning that the statement ‘light acts like a particle’ is true but ‘light acts as a wave’ is also true, statements that seem to contradict each other. However, if the law of noncontradiction is proven false, by definition of the law itself, then the law would have to be true as well; when the law is in place, it only allows for a statement to be true or false, but when people try to throw it out, unknowingly, they are bringing it right back in because of the nature of the law. In order to deny the law of noncontradiction, one has to use the law of noncontradiction, which circles back to the conclusion that the law must always be true. Furthermore, objections using quantum mechanics come from a misunderstanding of the fundamentals of quantum mechanics. Light is not literally a wave and particle; quantum mechanics treats light as a particle in order to proceed through calculations and has probability areas to where the particle could be, not where it is; it holds light in suspension between a wave and particle until calculations need to be made and one has to be chosen. When quantum mechanics is thoroughly understood, it becomes obvious that it, along with everything else in the universe, abides by the law of noncontradiction.

In order to disprove the law of noncontradiction, one would have to use the laws of noncontradiction to do so; if the law were ever to be proven false, it would also have to be true at the same time because the law, which had stated that a statement cannot be true and false at the same time in the same respect, is no longer a universal truth. Therefore, the law of noncontradiction must always be true because if it were not true, it would be both true and false at the same time: a logical inconsistency.
Transcendental Argument

The transcendental argument for the existence of God is a proof that uses presuppositional apologetics to establish the existence of the Christian God. This thesis will utilize a modified version of the transcendental argument, which does not specify the Christian God and leaves the argument open to any supernatural being. Essentially, this thesis proves that a god serves as the foundation for any reasoning and therefore, without him, no one can prove anything. This thesis takes it one step further by asserting that atheists have no grounds for practicing science or using the laws of logic, seeing as what is responsible for their rationality is a being they do not believe in.

Presuppositions of Both Sides

Both theists and atheists base their arguments and worldviews on certain presuppositions, or assumptions that prelude an argument. Disputes between the two are never solely about whether Jesus rose from the dead or if the world was created through a big bang; what really lies behind disagreements are the theists’ and atheists’ differences in their epistemology (the theory of knowledge) and metaphysics (the theory of reality).76

An atheist presupposes the autonomy of the human race from any supernatural being while the theist presupposes mankind’s dependency on God.77 These presuppositions cause believers and non-believers alike to interpret the world in different ways. It is the reason that theists see a piece of Scripture as prophecy and atheists believe it was written after the event

happened; it is why a theist would interpret a sudden recovery as a miracle and an atheist would search for a medical explanation.78

It will be shown that the atheists presuppositions are unable to account for concepts such as the uniformity of nature or the source of the laws of logic. Because of this, unbelievers will rationalize and try to search for answers that are ultimately borrowed from the believers presuppositions, which do offer an explanation for rational thought: God.79

\textit{Universal Laws}

The previous section explained what the laws of logic are and how they are used in the real world, but where do these laws come from? In theory, they are either materialistic, conventional or universal laws. Obviously, the laws of logic, like any other law is not materialistic. No one can hold the law of identity, can feel the law of contradiction or throw both laws out of the window (literally and figuratively). The laws are immaterial standards that objects within the universe must follow.

If the laws of logic were to be conventional laws, that is a human convention, then there would be no standard to which they are held. One day, the law of identity could be true, but the next day, humans could decide to change it so that $A \neq A$ or $A = B$ when A and B are not identical. If laws of logic were conventional, Canada could operate on different logic and rationality than Germany. Even this fictitious possibility is illogical because the laws of logic are not conventional; they are not created or decided upon by human beings.80 Furthermore, one cannot deny the laws of logic and come to a logical conclusion; if one even tried to deny, for

79 Ibid., 462-463.
80 Greg L. Bahnsen and Gordon Stein, "The Great Debate." Interview.
example, the law of noncontradiction, they would have to use the law of noncontradiction to do so, thus negating their entire argument.

If then the laws of logic are not a human convention and are not materialistic, that would leave that they are universal laws, which checks out; they are true everywhere regardless of what humans have to say about it. Furthermore, to prove their universal status, the laws of logic also apply to themselves, they are not immune from the logical thought process either. If one wanted to either prove or disprove these laws, they would have to use the laws themselves to do so which turns into a circular argument, starting with the premise that needs to be proven.

If the laws of logic are universal and immaterial, as has just been established, they are essentially an unchanging entity. It is not as if today the A = A but yesterday A ≠ A. They have always been true and constant and in order for that to be, there has to be something responsible for keeping them that way.

Where do they come from?

Not only do the laws of logic apply to objects within the universe, but they also apply to the universe itself. Using the law of noncontradiction, the universe is unable to exist and not exist at the same time and in the same respect, just like any object within the universe. For the laws to apply to the universe, they would have to be outside the universe, meaning that they *transcend* the universe, which is where the name of the argument comes from. If they were within the universe, they would not be unchanging entities since the universe and everything in it is subject to constant change. Furthermore, if they were within the universe, the laws would only exist as long as the universe exists; if the universe ceased to exist, the laws would cease to exist,
yet since the laws are true regardless of whether the universe exists or not, they must, once again, transcend the universe.

In an atheistic, materialistic world, there can be no entity that transcends the universe because nothing exists outside of the universe. A religious worldview is able to reconcile the two ideas of an unchanging, universal law with a changing universe through a God that is greater than both. The religious worldview provides an explanation for the laws of logic and therefore rational thought. Since atheists have no such explanation, besides the mere fact that the laws of logic are and have always been, the existence of God is proven with what Dr. Bahnsen likes to state as “the impossibility of the contrary.” Without God, there would be no rational thought or order in the universe and nothing would be able to be proven.\footnote{Greg L. Bahnsen and Gordon Stein, "The Great Debate." Interview. \footnote{This god that serves as the answer to the laws of logic would have to be a rational and unchanging god, and although this thesis is presented from a theistic point of view, I maintain the personal view that the Christian God is the only god that fits the aforementioned category.}}
Atheism and Science: The Real War

There are many different definitions to what exactly an atheist is or what they ‘believe’ and in these various explanations, they try to find a loophole. The standard definition of an atheist would be someone who denies the existence of God. In this instance, the burden of proof rests on the atheist and they are tasked with trying to prove a universal negative, which is impossible. For example, if someone were to say that there are no such things as unicorns, they would have to search the entire world at the exact same time to prove that claim, and even then, the phrase that there are no such things as unicorns would only be true at the moment the earth was searched.83

In light of this, some atheists redefine themselves and say that an atheist is someone who does not deny the existence of God but has reviewed the current proofs for him and find them inadequate. By redefining atheism in this way, the burden of proof shifts to Christians to provide what atheists consider an adequate explanation for the existence of God. Regardless of whether an atheist is someone who denies the existence of God or simply believes there is not enough evidence, an atheist does not include God in their worldview. And it is without God that they somehow have to come up with an explanation for the laws of logic.84

One attempt at an explanation that is given by atheists is through an a posteriori line of reason, that the laws of logic are true based on experience and observation. However, that explanation is contingent on past experiences and past experiences only. Why should a law based on one instance apply to another situation and be considered true?85 Drawing back to the electron example, how can it be known that Coulomb’s Law, the law that states that electrons

84 Ibid.
85 Ibid.
repel each other, is true for every single electron on the planet? Once again, logic is used to prove why the laws of logic are universal truths without providing a true source; an inefficient answer to how an atheist can reason within their worldview.

Many atheists use science and its ability to be tested and shown through experiments as a reason that they do not believe in God. They believe that science has all the answers they need, and since it is not possible to test or prove supernatural theories through experiments, it is therefore an illogical system of belief. Ironically, the very thing that they are using to disprove God’s existence is something that does quite the opposite; science, or more specifically, the reasoning behind science, can only be explained by a supernatural being, as seen through the transcendental argument. In this way, atheists find themselves in a circular proof, for they use science or laws of logic to reason that God does not exist, but the sole reason that they are able to reason is because He does; the existence of God must be accepted in order for them to attempt to deny it.

Options for Atheists

Atheists now have two options: either abandon all logic and practice science without reason (which is really not an option in the grand scheme of things) or give up their defiance to God and accept His existence. If an atheist is going to assume the autonomy of the human race when it comes to salvation and creation, they will have to do so in every aspect, which means being autonomous from God in regards to reasoning and logic. Since it has been shown that atheists do not have an explanation for the laws of logic within their worldview, this means that
in order for them to be completely autonomous, they would have to abandon logic and reasoning as well.⁸⁶ So, an atheist cannot pursue science.

Every atheist that tries to engage in a debate on this topic immediately nullifies their claim because the only reason they are able to debate is because God exists. Any position that does not include God is philosophically impossible because there is no way to reason without Him.⁸⁷ Atheists have no basis for believing there is order in the universe unless they borrow from a theistic worldview. When they do this, they are silently suppressing the truth.⁸⁸ Van Til compares it to arguing on the existence of air: two people can take opposing sides but they are subconsciously assuming air exists because they are breathing it in order to debate. If the air did not exist, there would have to be an alternate explanation for how any living thing on earth is currently breathing.⁸⁹ The atheist’s position is now discredited, and with that, their ability to practice science is nullified.

⁸⁷ Ibid., 6.
Rebuttals

Science and Religion are Incompatible

Some might try to divert the discussion from the real topic of atheism and science and make the objection that science and religion are incompatible in an attempt to somehow prove that atheism and science are compatible. First of all, the claim that science and religion are incompatible has no backing; as Galileo believed, any new scientific discoveries will only give a new understanding to Scripture and the nature of God. The contrary is true: science and religion are compatible, which is seen throughout history as religion propels science forward.

How Did God Make the Laws?

Others may still want an answer to how God created the laws of logic, and since no one is exactly sure how He did it, they take that as proof that He did not. However, the exact method that God used to create the laws does not take away from the fact that He created them. Yet, atheists have still not answered the question of where the laws of logic come from in their worldview, if not from a supernatural being.

Transcendental Nature of the Laws of Logic

Why must the laws of logic come from the transcendental nature of God? Why can’t they be transcendental on their own? For anything to transcend the universe, it must be rooted in omnipotence. The laws of logic are not omnipotent, yet they do transcend the universe. That transcendental nature has to come from something that is omnipotent and that omnipotence can only be found in God.
Repeated Observation

It has been said that the laws of logic are like laws of nature, such as the law of gravity, tested over and over and each time showing the same result. Atheists would say that repeated observations contribute to the regularity of universe and the laws are just an inherent property of nature. However, that is not offering a proof or explanation for the laws of logic, it is only plainly stating an observation, and observation does not equal causation. It still has not answered the question of why they make repeated, accurate predictions that show regularity within the universe; there needs to be evidence besides the fact that they are self-evident.

Applying the laws to God

Some attempt to apply the same laws of logic that religion claims to have an answer for to the God that believers worship in an attempt to trap theists because if God has to abide by the laws of logic, then He is not omnipotent due to the external restraints the laws place on Him. However, it is not that God is restrained by the laws of logic but rather it is not in His nature to violate them. He created them and He follows them because they are a part of His nature—not because they have any power over Him.

Another way opponents try to apply the laws of logic to God is through omnipotence paradoxes such as “Can God create a rock so heavy that He can’t lift it?” The question in itself is illogical and its wording serves as a trap for theists. Once again, the argument brings into question the nature of God; not only is it outside His nature to do anything that is illogical, it is also outside His nature to create something that is greater than He, since by definition, God is the
greatest concept to ever exist. However, if the opponent *really* wants an answer, an illogical question warrants an illogical response: God can create a rock He cannot lift, but He can also lift that same rock!

Lastly, all of these objections came from logical lines of thoughts, yet before one can try to apply any form of logic to God they have to establish where their own logic comes from. Since the only place they could possibly come from is God, applying what He created to try and disprove Him would be ineffective.
Conclusion

From a historical standpoint, religion and science have been proven to not only peacefully coexist but to also advance each respective field; religion propels science forward and science reveals more about the creation of a supernatural being. This thesis has also proved that the laws of logic, a fundamental part of scientific practice, are transcendental in nature and the only explanation for the laws arise from the existence of God.

In a complete flip from what was commonly accepted, science becomes a tool for theists to use, not atheists, and therefore the entire atheist stance is dismantled. Since science is dependent on God, scientific arguments that are used to refute the existence of God no longer hold value because the patterns of logic that science uses to examine those situations can only be applied through the acknowledgment of the same God that the arguments are trying to disprove. Atheists employ all sorts of logical fallacies such as circular proof or begging the question in order to reconcile a godless universe with the transcendental laws of logic; an impossible feat.

As Bahnsen states many times, atheism and science are incompatible because of the impossibility of the contrary.\(^90\) It is ironic that atheists pride themselves on being light-years ahead of those who fall victim to the false claims of religion when underneath their atheistic worldview is the borrowed belief of a supernatural being. This thesis not only proves that atheism, in its truest sense, is incompatible with science, but it also provides proof for the existence of God. Christians and members of other religions should no longer be forced to choose between their religion and science. Instead, theists should realize the absurdity of the

\(^{90}\) Greg L. Bahnsen and Gordon Stein, "The Great Debate." Debate
atheist’s claims and use their God-given tools, science and logic, to put atheists in their place once and for all.
Bibliography

Can an atheist be spiritual? What is the intersection of atheism and spirituality? What spiritual paths are atheistic? What do spiritual atheists believe? Religions are the archaic sciences of viable human relationships. It doesn’t really matter what religion you follow. As long as you are steadfast in obeying its precepts you will live a happier life. Atheism is perfectly compatible with spirituality and an atheist can have authentic experiences. He needs to be very self dependent on his path and he is insured against deception and hallucinations because his belief system is based on facts and tangible experiences. (The only path I suggest for a atheist is Concentrative Meditation). Marcelo Gleiser, a 60-year-old Brazil-born theoretical physicist at Dartmouth College and prolific science popularizer, has won this year’s Templeton Prize. Valued at just under $1.5 million, the award from the John Templeton Foundation annually recognizes an individual who has made an exceptional contribution to affirming life’s spiritual dimension. Its past recipients include scientific luminaries such as Sir Martin Rees and Freeman Dyson, as well as religious or political leaders such as Mother Teresa, Desmond Tutu and the Dalai Lama. Across his 35-year scientific career, Gleiser’s research has led him to assert that he is an atheist. The perceptions went onto my tabula rasa mind, where my epistemology determined the validity of my perceptions and ordered them in my metaphysical hierarchy. Your “Demon Deceiver hypothesis”, whatever that is, would appear to rely on the existence of a supernatural world. Instead I believe in “Naturalism, challenging the cogency of the cosmological, teleological, and moral arguments, holds that the univ