Applying the Science of Learning

Richard E. Mayer
University of California, Santa Barbara
CONTENTS

Preface vii

INTRODUCTION 1

The Big Three: Learning, Instruction, and Assessment 2
Rationale for Applying the Science of Learning 4
What Is Applying the Science of Learning? 6
Historical Overview of the Relation between the Science of Learning and the Science of Instruction 8
Viewing the Relation between the Science of Learning and the Science of Instruction as Overlapping Goals 10
References and Suggested Readings 12

Section 1 HOW LEARNING WORKS 13

What Is Learning? 14
What Changes: Behavior or Knowledge? 16
What Is the Science of Learning? 18
A Look at Transfer 20
How Learning Works: Three Metaphors of Learning 22
A Closer Look at Response Strengthening: Thorndike’s Law of Effect 24
A Closer Look at Information Acquisition: Ebbinghaus’ Learning Curve 26
A Closer Look at Knowledge Construction: Bartlett’s Assimilation to Schema 28
How Learning Works: Three Principles from the Learning Sciences 30
A Closer Look at Dual Channels: Paivio’s Concreteness Effect 31
A Closer Look at Limited Capacity: Miller’s Magic Number 7 32
A Closer Look at Active Processing: Wittrock’s Generative Processes 33
How Learning Works: A Cognitive Model of Learning 34
Three Memory Stores in Meaningful Learning 36
Three Cognitive Processes in Meaningful Learning 37
The Mighty Ms: Motivation and Metacognition 38
Motivation to Learn 39
How Motivation Works 40
Metacognition in Learning 42
Learning in Subject Areas 44
Eight Things We Know about Learning from Word Lists 46
References and Suggested Readings 48

Section 2 HOW INSTRUCTION WORKS 51

What Is Instruction? 52
What Is the Science of Instruction? 54
What Is an Instructional Objective? 56
Three Levels of Instructional Objectives 58
Five Kinds of Knowledge in Instructional Objectives 60
One challenge with applying SoL insights to classroom learning is that they tend to arrive piecemeal from laboratory-based research studies. These findings usually focus on specific aspects of the underlying learning processes, rather than being directly aimed at improving education. Although the science provides principles and a scientifically determined understanding of how learning works, based on concrete measurement of behaviour and brain function, it does not provide a list of "top tips" or practices that are guaranteed to work with any class or individual in any context. In the absence of a one-size-fits-all prescription for effective teaching, teachers must constantly make decisions based on their own ideas of how learning proceeds and what they observe occurring in their classrooms. The Science of Learning Institute seeks to understand and optimize the most essential part of our human capital: the ability to learn. The Institute supports interdisciplinary research, training, and outreach programs that will generate scientific discoveries and build meaningful connections between research, practice, and policy. Read More ». Event Highlight. SLI hosted our 3rd Biennial Science of Learning Symposium entitled Minding the Gaps Among Levels of Explanation. Distinguished scientists highlighted complementary and contrasting perspectives on the neural and cognitive bases of learnin...