Detecting Mobile Malicious Web pages in Real Time

Pydakula Sarath Babu1 P.Ganga Bhavani2
1PG Scholar, Dept of Computer Science Engineering, Chirala Engineering College, A.P, India.
2Professor, Dept of Computer Science Engineering, Chirala Engineering College, A.P, India

telechnical considerations involved company. For feasibility analysis, some understan
This is to ensure that the proposed system is not a burden to the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential. Three key considerations involved in the feasibility analysis are

- ECONOMICAL FEASIBILITY
- TECHNICAL FEASIBILITY
- SOCIAL FEASIBILITY
- ECONOMICAL FEASIBILITY

This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY
This study is carried out to check the technical feasibility, that is the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.

SOCIAL FEASIBILITY
The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.

PRELIMINARY INVESTIGATION
The first and foremost strategy for development of a project starts from the thought of designing a mail enabled platform for a small firm in which it is easy and convenient of sending and receiving messages, there is a search engine, address book and also including some entertaining games. When it is approved by the organization and our project guide the first activity, i.e. preliminary investigation begins. The activity has three parts:

REQUEST CLARIFICATION
Feasibility Study
Request Approval
REQUEST CLARIFICATION
After the approval of the request to the organization and project guide, with an investigation being considered, the project request must be examined to determine precisely what the system requires.

Here our project is basically meant for users within the company whose systems can be interconnected by the Local Area Network (LAN). In today’s busy schedule man need everything should be provided in a readymade manner. So taking into consideration of the vastly use of the net in day to day life, the corresponding development of the portal came into existence.

FEASIBILITY ANALYSIS
An important outcome of preliminary investigation is the determination that the system request is feasible. This is possible only if it is feasible within limited resource and time. The different feasibilities that have to be analyzed are

Operational Feasibility
Economic Feasibility
Technical Feasibility
Operational Feasibility
Operational Feasibility deals with the study of prospects of the system to be developed. This system

Keywords: Kayo, Fraudulent Phone Number, Static Analysis Technique.

ABSTRACT
Mobile specific web pages differ significantly from their desktop counterparts in content, layout and functionality. Accordingly, existing techniques to detect malicious websites are unlikely to work for such web pages. In this paper, we design and implement kayo, a mechanism that distinguishes between malicious and benign mobile web pages. Kayo makes this determination based on static features of a webpage ranging from the number of iframes to the presence of known fraudulent phone numbers. First, we experimentally demonstrate the need for mobile specific techniques and then identify a range of new static features that highly correlate with mobile malicious web pages. We then apply kayo to a dataset of over 350,000 known benign and malicious mobile web pages and demonstrate 90% accuracy in classification. Moreover, we discover, characterize and report a number of web pages missed by Google Safe Browsing and Virus Total, but detected by kayo. Finally, we build a browser extension using kayo to protect users from malicious mobile websites in real-time. In doing so, we provide the first static analysis technique to detect malicious mobile web pages.

SYSTEM STUDY
FEASIBILITY STUDY
The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out.

Request Approval
REQUEST APPROVAL
Not all request projects are desirable or feasible. Some organization receives so many project requests from client users that only few of them are pursued. However, those projects that are both feasible and desirable should be put into schedule. After a project request is approved, it cost, priority, completion time and personnel requirement is estimated and used to determine where to add it to any project list. Truly speaking, the approval of those above factors, development works can be launched.

SYSTEM DESIGN AND DEVELOPMENT INPUT DESIGN
Input Design plays a vital role in the life cycle of software development, it requires very careful attention of developers. The input design is to feed data to the application as accurate as possible. So inputs are supposed to be designed effectively so that the errors occurring while feeding are minimized. According to Software Engineering Concepts, the input forms or screens are designed to provide to have a validation control over the input limit, range and other related validations.

This system has input screens in almost all the modules. Error messages are developed to alert the user whenever he commits some mistakes and guides him in the right way so that invalid entries are not made. Let us see deeply about this under module design. Input design is the process of converting the user created input into a computer-based format. The goal of the input design is to make the data entry logical and free from errors. The error is in the input are controlled by the input design. The application has been developed in user-friendly manner. The forms have been designed in such a way during the processing the cursor is placed in the position where must be entered. The user is also provided with an option to select an appropriate input from various alternatives related to the field in certain cases.

Validations are required for each data entered. Whenever a user enters an erroneous data, error message is displayed and the user can move on to the subsequent pages after completing all the entries in the current page.

OUTPUT DESIGN
The Output from the computer is required to mainly create an efficient method of communication within the company primarily among the project leader and his team members, in other words, the administrator and the clients. The output of VPN is the system which allows the project leader to manage his clients in terms of creating new clients and assigning new projects to them, maintaining a record of the project validity and providing folder level access to each client on the user side depending on the projects allotted to him. After completion of a project, a new project may be assigned to the client. User authentication procedures are maintained at the initial stages itself. A new user may be created by the administrator himself or a user can himself register as a new user but the task of assigning projects and validating a new user rests with the administrator only.

The application starts running when it is executed for the first time. The server has to be started and then the internet explorer in used as the browser. The project will run on the local area network so the server machine will serve as the administrator while the other connected systems can act as the clients. The developed system is highly user friendly and can be easily understood by anyone using it even for the first time.

Client Server
Over view:
With the varied topic in existence in the fields of computers, Client Server is one, which has generated more heat than light, and also more hype than reality. This technology has acquired a certain critical mass attention with its dedication conferences and magazines. Major computer vendors such as IBM and DEC, have declared that Client Servers is their main future market. A survey of DBMS magazine revealed that 76% of its readers were actively looking at the client server solution. The growth in the client server development tools from $200 million in 1992 to more than $1.2 billion in 1996.

Client server implementations are complex but the underlying concept is simple and powerful. A client is an application running with local resources but able to request the database and relate the services from separate remote server. The software mediating this client server interaction is often referred to as MIDDLEWARE.

The typical client either a PC or a Work Station connected through a network to a more powerful PC, Workstation, Midrange or Main Frames server usually capable of handling request from more than one client. However, with some configuration server may also act as client. A server may need to access other server in order to process the original client request.

The key client server idea is that client as user is essentially insulated from the physical location and formats of the data needs for their application. With the proper middleware, a client input from or report can transparently access and manipulate both local database on the client machine and remote databases on one or more servers. An added bonus is the client server opens the door to multi-vendor database access indulging heterogeneous table joints.

What is a Client Server Two prominent systems in existence are client server and file server systems. It is essential to distinguish between client servers and file server systems. Both provide shared network access to data but the comparison ends there! The file server simply provides a remote disk drive that can be accessed by LAN applications on a file by file basis. The client server offers full relational database services such as SQL-Access, Record modifying, Insert, Delete with full relational integrity backup/ restore performance for high volume of transactions, etc. the client server middleware provides a flexible interface between client and server, who does what, when and to whom. Why Client Server
Client server has evolved to solve a problem that has been around since the earliest days of computing: how best to distribute your computing, data generation and data storage resources in order to obtain efficient, cost effective departmental an enterprise wide data processing. During mainframe era choices were quite limited. A central machine housed both the CPU and DATA (cards, tapes, drums and later disks). Access to these resources was initially confined to batched runs that produced departmental reports at the appropriate intervals. A strong central information service department ruled the corporation. The role of the rest of the corporation limited to requesting new or more frequent reports and to provide hand written forms from which the central data banks were created and updated. The earliest client server
solutions therefore could best be characterized as “SLAVE-MASTER”. Time-sharing changed the picture. Remote terminal could view and even change the central data, subject to access permissions. And, as the central data banks evolved in to sophisticated relational database with non-programmer query languages, online users could formulate adhoc queries and produce local reports with out adding to the MIS applications software backlog. However remote access was through dumb terminals, and the client server remained subordinate to the Slave\Master.

Front end or User Interface Design

The entire user interface is planned to be developed in browser specific environment with a touch of Intranet-Based Architecture for achieving the Distributed Concept.
The browser specific components are designed by using the HTML standards, and the dynamism of the designed by concentrating on the constructs of the Java Server Pages.

Communication or Database Connectivity Tier

The Communication architecture is designed by concentrating on the Standards of Servlets and Enterprise Java Beans. The database connectivity is established by using the Java Data Base Connectivity.

The standards of three-tire architecture are given major concentration to keep the standards of higher cohesion and limited coupling for effectiveness of the operations.

Features of The Language Used

In my project, I have chosen Java language for developing the code.

About Java

Initially the language was called as “oak” but it was renamed as “Java” in 1995. The primary motivation of this language was the need for a platform-independent (i.e., architecture neutral) language that could be used to create software to be embedded in various consumer electronic devices.

- Java is a programmer’s language.
- Java is cohesive and consistent.
- Except for those constraints imposed by the Internet environment, Java gives the programmer, full control.

Finally, Java is to Internet programming where C was to system programming.

Importance of Java to the Internet

Java has had a profound effect on the Internet. This is because; Java expands the Universe of objects that can move about freely in Cyberspace. In a network, two categories of objects are transmitted between the Server and the Personal computer. They are: Passive information and Dynamic active programs.

The Dynamic, Self-executing programs cause serious problems in the areas of Security and probability. But, Java addresses those concerns and by doing so, has opened the door to an exciting new form of program called the Applet.

Java can be used to create two types of programs

Applications and Applets: An application is a program that runs on our Computer under the operating system of that computer. It is more or less like one creating using C or C++. Java’s ability to create Applets makes it important. An Applet is an application designed to be transmitted over the Internet and executed by a Java –compatible web browser. An applet is actually a tiny Java program, dynamically downloaded across the network, just like an image. But the difference is, it is an intelligent program, not just a media file. It can react to the user input and dynamically change.

SYSTEM TESTING

TESTING METHODOLOGIES

The following are the Testing Methodologies:
- Unit Testing.
- Integration Testing.
- User Acceptance Testing.
- Output Testing.
- Validation Testing.

Unit Testing

Unit testing focuses verification effort on the smallest unit of Software design that is the module. Unit testing exercises specific paths in a module’s control structure to ensure complete coverage and maximum error detection. This test focuses on each module individually, ensuring that it functions properly as a unit. Hence, the naming is Unit Testing. During this testing, each module is tested individually and the module interfaces are verified for the consistency with design specification. All important processing path are tested for the expected results. All error handling paths are also tested.

Integration Testing

Integration testing addresses the issues associated with the dual problems of verification and program construction. After the software has been integrated a set of high order tests are conducted. The main objective in this testing process is to take unit tested modules and builds a program structure that has been dictated by design. The following are the types of Integration Testing:
1. Top Down Integration
 - This method is an incremental approach to the construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main program module. The module subordinates to the main program module are incorporated into the structure in either a depth first or breadth first manner.
 - In this method, the software is tested from main module and individual stubs are replaced when the test proceeds downwards.
2. Bottom-up Integration
 - This method begins the construction and testing with the modules at the lowest level in the program structure. Since the modules are integrated from the bottom up, processing required for modules subordinate to a given level is always available and the need for stubs is eliminated. The bottom up integration strategy may be implemented with the following steps:
 - The low-level modules are combined into clusters into clusters that perform a specific Software sub-function.
 - A driver (i.e.) the control program for testing is written to coordinate test case input and output.
 - The cluster is tested.
 - Drivers are removed and clusters are combined moving upward in the program structure. The bottom up approaches tests each module individually and then each module is module is integrated with a main module and tested for functionality.

User Acceptance Testing

User Acceptance of a system is the key factor for the success of any system. The system under consideration is tested for user acceptance by constantly keeping in touch with the prospective system users at the time of developing and making changes.
International Journal of Research

Volume 7, Issue XII, December/2018

wherever required. The system developed provides a friendly user interface that can easily be understood even by a person who is new to the system.

Output Testing

After performing the validation testing, the next step is output testing of the proposed system, since no system could be useful if it does not produce the required output in the specified format. Asking the users about the format required by them tests the outputs generated or displayed by the system under consideration. Hence the output format is considered in 2 ways one is on screen and another in printed format.

Validation Checking: Validation checks are performed on the following fields. Text Field: The text field can contain only the number of characters lesser than or equal to its size. The text fields are alphanumeric in some tables and alphabetic in other tables. Incorrect entry always flashes and error message.

Numeric Field: The numeric field can contain only numbers from 0 to 9. An entry of any character flashes an error message. The individual modules are checked for accuracy and what it has to perform. Each module is subjected to test run along with sample data. The individually tested modules are integrated into a single system. Testing involves executing the real data information is used in the program the existence of any program defect is inferred from the output. The testing should be planned so that all the requirements are individually tested.

A successful test is one that gives out the defects for the inappropriate data and produces and output revealing the errors in the system. Preparation of Test Data: Taking various kinds of test data does the above testing. Preparation of test data plays a vital role in the system testing. After preparing the test data the system under study is tested using that test data. While testing the system by using test data errors are again uncovered and corrected by using above testing steps and corrections are also noted for future use.

Using Live Test Data:

Live test data are those that are actually extracted from organization files. After a system is partially constructed, programmers or analysts often ask users to key in a set of data from their normal activities. Then, the systems person uses this data as a way to partially test the system. In other instances, programmers or analysts extract a set of live data from the files and have them entered themselves.

Admin

In this module, admin server has to login with valid username and password. After login successful he can do some operations such as -- View all users and authorize and Add Topics with Topic name, URL, Desc(en), Uses, URL Author, Launched year, attach Topic image, List all topics urls with ranking order by desc and rating order by desc, Set Limit to access malicious WebPages and view, List all Malicious WebPages (if admin name is null, publisher name is Hacker) with attacker names with date and time and IP Address, List all Malicious WebPages accessed user details with date and time and IP Address, Block Malicious WebPages accessed user if they cross access limit and view the same, View all recommended WebPages by other users, View all Web pages viewed users details with date and time and IP Address, View Topic ranks in chart, view NO. of time accessed specified Malicious web page by particular user in the chart, View NO. of blocked and Un blocked users in the chart.

User

In this module, User should register before searching the Website contents. After registration successful the user can login by using valid user name and password. After Login successful the user will do some operations --- View profile, Search WebPages by content keyword - Display only topic name order by description and WebPages and then click on topic name to view all details (increase rank), and recommend to other users, click on web url to display webpage, View all other user recommended Web pages, View Top k web pages urls and view the details(increase rank).

Software Environment

Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language

The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

- Simple
- Architecture neutral
- Object oriented
- Portable
- Distributed
- High performance
- Interpreted
- Multithreaded
- Robust
- Dynamic
- Secure

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called Java byte codes — the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works.

You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a development tool or a Web browser that can run applets, is an implementation of the Java VM. Java byte codes help make “write once, run anywhere” possible. You can compile your program into byte codes on any platform that has a Java compiler. The byte codes can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in
The Java programming language can run on Windows 2000, a Solaris workstation, or on an iMac.

The Java Platform

A platform is the hardware or software environment in which a program runs. We’ve already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of the operating system and hardware. The Java Platform differs from most other platforms in that it’s a software-only platform that runs on top of other hardware-based platforms. The Java Platform has two components:

• The Java Virtual Machine (Java VM)
• The Java Application Programming Interface (Java API)

You’ve already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various hardware-based platforms.

The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do? Highlights what functionality some of the packages in the Java API provide.

The following figure depicts a program that’s running on the Java platform. As the figure shows, the Java API and the virtual machine insulate the program from the hardware.

The most common types of programs written in the Java programming language are applets and applications. If you’ve surfed the Web, you’re probably already familiar with applets. An applet is a program that adheres to certain conventions that allow it to run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets for the Web. The general-purpose, high-level Java programming language is also a powerful software platform. Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of servers are Web servers, proxy servers, mail servers, and print servers. Another specialized program is a servlet. A servlet can almost be thought of as an applet that runs on the server side. Java Servlets are a popular choice for building interactive web applications, replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime extensions of applications. Instead of working in browsers, though, servlets run within Java Web servers, configuring or tailoring the server.

How does the API support all these kinds of programs? It does so with packages of software components that provide a wide range of functionality. Every full implementation of the Java platform gives you the following features:

• The essentials: Objects, strings, threads, numbers, input and output, data structures, system properties, date and time, and so on.
• Applets: The set of conventions used by applets.
• Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram Protocol) sockets, and IP (Internet Protocol) addresses.
• Internationalization: Help for writing programs that can be localized for users worldwide. Programs can automatically adapt to specific locales and be displayed in the appropriate language.
• Security: Both low level and high level, including electronic signatures, public and private key management, access control, and certificates.
• Software components: Known as JavaBeans™, can plug into existing component architectures.
• Object serialization: Allows lightweight persistence and communication via Remote Method Invocation (RMI).
• Java Database Connectivity (JDBC™): Provides uniform access to a wide range of relational databases.

The Java platform also has APIs for 2D and 3D graphics, accessibility, servers, collaboration, telephony, speech, animation, and more. The following figure depicts what is included in the Java 2 SDK.

J2ME uses configurations and profiles to customize the Java Runtime Environment (JRE). As a complete JRE, J2ME is comprised of a configuration, which determines the JVM used, and a profile, which defines the application by adding domain-
CONCLUSION

Mobile webpages are significantly different than their desktop counterparts in content, functionality and layout. Therefore, existing techniques using static features of desktop webpages to detect malicious behavior do not work well for mobile specific pages. We designed and developed a fast and reliable static analysis technique called kAYO that detects mobile malicious webpages. kAYO makes these detections by measuring 44 mobile relevant features from webpages, out of which 11 are newly identified mobile specific features. kAYO provides 90% accuracy in classification, and detects a number of malicious mobile webpages in the wild that are not detected by existing techniques such as Google Safe Browsing and VirusTotal. Finally, we build a browser extension using kAYO that provides real-time feedback to users. We conclude that kAYO detects new mobile specific threats such as websites hosting known fraud numbers and takes the first step towards identifying new security challenges in the modern mobile web.

REFERENCES

Ensure mobile ad quality, mobile ad protection, and prevent mobile malware by utilizing GeoEdge™s mobile ad governance technology. Detect, analyze and block problematic ads in real time, before any damage occurs. Our mobile ad protection solution guards against issues that disrupt the user experience and blocks all threats, including those from third parties and JavaScript tags. AppLift opens new revenue stream thanks to partnership with GeoEdge. Read more >.

Mediasmart sees 78% decrease in mobile ad quality violations using GeoEdge. Read more >.

Dotdash relies on GeoEdge to protect their users from non-compliant ads. Detecting real world XSS attacks. For a real world analysis we need logs from a web server. The Honeynet Project used to provide regular Honeynet challenges to analyze attacks and share their findings. The challenge in Scan 31 was to analyze web server log files looking for signs of abuse [Honeynet Project Scan 31, 2004]. Information leakage usually happens in error pages which give away too much information. Error messages can contain valuable data like if a user name exists on the system, application paths, server information and configuration files. Error pages can be recognized with the threedigit HTTP status code, which is logged for every request.