A TEXTBOOK OF
ENGINEERING
CHEMISTRY

For the Students of B.E., B.Tech., B.Sc. [Engg.] A.M.I.E.,
M.Sc. (Environmental Chemistry), M. Tech. (Environmental Engineering)
and other Competitive Courses.

S.S. DARA
M.Sc., Ph.D.
Former Professor & Head,
Department of Applied Chemistry
Visvesvaraya National Institute of Technology (Formerly VRCE),
NAGPUR - 440 010.

Revised by
S.S. UMARE
M.Sc., Ph.D.
Professor & Head,
Department of Applied Chemistry
Visvesvaraya National Institute of Technology (Formerly VRCE),
NAGPUR - 440 010

S. CHAND & COMPANY LTD.
(An ISO 9001 : 2000 Company)
RAM NAGAR, NEW DELHI - 110 055
<table>
<thead>
<tr>
<th>Branches</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHMEDABAD</td>
<td>1st Floor, Heritage, Near Gujarat Vidhyapeeth, Ashram Road, Ahmedabad - 380 014, Ph: 27541965, 27542369, ahmedabad@schandgroup.com</td>
</tr>
<tr>
<td>BENGALURU</td>
<td>No. 6, Ahuja Chambers, 1st Cross, Kumara Krupa Road, Bengaluru - 560 001, Ph: 22268048, 22354008, bangalore@schandgroup.com</td>
</tr>
<tr>
<td>Bhopal</td>
<td>238-A, M.P. Nagar, Zone 1, Bhopal - 462 011, Ph: 4274723, bhopal@schandgroup.com</td>
</tr>
<tr>
<td>CHANDIGARH</td>
<td>S.C.O. 2419-20, First Floor, Sector - 22-C (Near Aroma Hotel), Chandigarh - 160 022, Ph: 2725443, 2725446, chandigarh@schandgroup.com</td>
</tr>
<tr>
<td>CHENNAI</td>
<td>152, Anna Salai, Chennai - 600 002, Ph: 28460026, 28460027, chennai@schandgroup.com</td>
</tr>
<tr>
<td>COIMBATORE</td>
<td>Plot No. 5, Rajalakshmi Nagar, Peelamedu, Coimbatore - 641 004, (M) 0944422842, coimbatore@schandgroup.com</td>
</tr>
<tr>
<td>Cuttack</td>
<td>1st Floor, Bhartia Tower, Badambadi, Cuttack - 753 009, Ph: 2332580, 2332581, cuttack@schandgroup.com</td>
</tr>
<tr>
<td>DEHRADUN</td>
<td>1st Floor, 20, New Road, Near Dwarka Store, Dehradun - 248 001, Ph: 2711101, 2710861, dehradun@schandgroup.com</td>
</tr>
<tr>
<td>GUWAHATI</td>
<td>Pan Bazar, Guwahati - 781 001, Ph: 2738811, 2735640, guwahati@schandgroup.com</td>
</tr>
<tr>
<td>HYDERABAD</td>
<td>Padma Plaza, H.No. 3-4-630, Opp. Ratna College, Narayanaguda, Hyderabad - 500 029, Ph: 24651135, 24744815, hyderabad@schandgroup.com</td>
</tr>
<tr>
<td>JAIPUR</td>
<td>A-14, Janta Store Shopping Complex, University Marg, Bapu Nagar, Jaipur - 302 015, Ph: 2719126, jaipur@schandgroup.com</td>
</tr>
<tr>
<td>JALANDHAR</td>
<td>Mai Hiran Gate, Jalandhar - 144 008, Ph: 2401630, 5000630, jalandhar@schandgroup.com</td>
</tr>
<tr>
<td>JAMMU</td>
<td>67/B, B-Block, Gandhi Nagar, Jammu - 180 004, (M) 09878561464</td>
</tr>
<tr>
<td>KOCHI</td>
<td>Kachapilly Square, Mullassery Canal Road, Ernakulam, Kochi - 682 011, Ph: 2378207, cochin@schandgroup.com</td>
</tr>
<tr>
<td>KOLKATA</td>
<td>285/J, Bigin Bhan Ganguly Street, Kolkata - 700 012, Ph: 22367459, 22373914, kolkata@schandgroup.com</td>
</tr>
<tr>
<td>LUCKNOW</td>
<td>Mahabeer Market, 25 Gwynne Road, Aminabad, Lucknow - 226 018, Ph: 2628801, 2264815, lucknow@schandgroup.com</td>
</tr>
<tr>
<td>MUMBAI</td>
<td>Blackie House, 103/5, Walchand Hirachand Marg, Opp. G.P.O., Mumbai - 400 001, Ph: 2269081, 22610885, mumbai@schandgroup.com</td>
</tr>
<tr>
<td>NAGPUR</td>
<td>Karnal Bag, Model Mill Chowk, Ummer Road, Nagpur - 440 032, Ph: 2723901, 2777666, nagpur@schandgroup.com</td>
</tr>
<tr>
<td>PATNA</td>
<td>104, Citicentre Ashok, Govind Mitra Road, Patna - 800 004, Ph: 2300489, 2302100, patna@schandgroup.com</td>
</tr>
<tr>
<td>PUNE</td>
<td>291/1, Ganesh Gayatri Complex, 1st Floor, Somwarpeth, Near Jain Mandir, Pune - 411 011, Ph: 64017298, pune@schandgroup.com</td>
</tr>
<tr>
<td>RAIPUR</td>
<td>Kailash Residency, Plot No. 4B, Bottle House Road, Shankar Nagar, Raipur - 492 007, Ph: 09981200834, raipur@schandgroup.com</td>
</tr>
<tr>
<td>Ranchi</td>
<td>Flat No. 104, Sri Draupadi Smriti Apartments, East of Jaipal Singh Stadium, Neel Ratan Street, Upper Bazar, Ranchi - 834 001, Ph: 2208761, ranchi@schandgroup.com</td>
</tr>
<tr>
<td>VISAKHAPATNAM</td>
<td>Plot No. 7, 1st Floor, Allipuram Extension, Opp. Radhakrishna Towers, Seethammadhara North Extn., Visakhapatnam - 530 013, (M) 09347580841, visakhapatnam@schandgroup.com</td>
</tr>
</tbody>
</table>

© 1986, S.S. Dara & S.S. Umare
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Publishers.

First Edition 1986
Twelfth Edition 2010
PRINTED IN INDIA

By Rajendra Ravindra Printers Pvt. Ltd., 7361, Ram Nagar, New Delhi -110 055 and published by S. Chand & Company Ltd., 7361, Ram Nagar, New Delhi -110 055.
Any good text book, particularly that in the fast changing fields such as engineering and technology, is not only expected to cater to the current curricular requirements of various institutions but also should provide a glimpse towards the latest developments in the concerned subject and the relevant disciplines. It should guide the periodic review and updating of the curriculum. It is precisely with this spirit that new topics have been constantly added in every Edition of this book. This approach has been appreciated and encouraged by the students and the faculty of the various engineering institutions in the country as indicated by the phenomenal response received for this book over the past two decades. This new Twelfth Edition of the book is another effort in that direction.

In this edition, several chapters have been updated and revised keeping in view of the recent developments. In the chapter on "Water treatment" desalination of water and some additional numericals on water treatment have been included. In the chapter on "Fuel and Combustion" the new topics such as catalytic converter, LPG, CNG, power alcohol, biodiesel and some numericals on combustion calculation of current interest have been included. In the chapter "Cement" topics on properties such as soundness, fineness of cement and use of fly ash as cementing material have been included. In the chapter on "Lubricants" viscosity index and re-refining of lubricating oil is included. In the chapter on "Corrosion" the problem on corrosion tendency of metal is included.

In the chapter on polymer several advance topics such as conducting polymers, biopolymers, low dielectric constant polymers, liquid crystal polymers have been added and lot of text in this chapter has been re-written for greater clarity and simplicity. New diagrams have been incorporated and a number of the old one have been improved upon.

The text in the chapter composite have been added. One detailed section on the magnetic material have been added in the chapter, structure of solids. The title of the chapter "Ceramics" have been change by "Glass and Ceramics" and the text on glass is included. Further, the printing mistakes have been corrected and several other chapters have been updated wherever possible.

I sincerely thank the student and teaching community of engineering and technology faculty all over the country. It is solely their encouragement, suggestions, feedback and constructive criticism that is responsible in carving out this book in the present form.

This twelfth revised, enlarged and enriched edition of the book is sincerely offered at the service of students and teaching fraternity associated with engineering chemistry from the various engineering and technological institutions all over the country. It is hoped that this new edition of the book will be received with vibrant enthusiasm.

AUTHORS
This book is written exclusively for students of various branches of engineering, keeping in view their professional requirements, after entering into their practical life. Many new products of the chemical industries are finding increasing application in all the fields of engineering. The scope of their application is mostly dictated by their chemical behaviour under a given set of conditions. For instance, an ideal selection of an appropriate metal, metal, alloy, or combination of metals, the design of an equipment to minimize corrosion, the selection of a proper lubricating oil to minimize friction and wear, the selection of suitable additives for a special cement or the selection of the right type of a ceramic, plastic or rubber for satisfactory performance for a given purpose under a given set of conditions, can be made only on the basis of the chemical properties of materials, even more than on their physical properties because slight changes in chemical composition may alter the physical properties considerably. Inadequate knowledge of the chemical principles involved may lead to serious errors in the selection and application of the materials used in any field of engineering. It is for this reason that the engineering faculties of many foreign universities are insisting on a second course in Chemistry for their students. This book lends further support for their conviction that “the engineering graduate who knows the differences in chemical properties of alternative materials and who understands the general chemical principles on which their behaviour depends will prove to be a better and more successful engineer than one who does not.”

This book embodies 12 chapters which are of basic importance in the curriculum of engineering students and provide a core course of engineering chemistry for all branches of engineering. Each chapter consists of a methodical introduction, historical background, discussion of basic physico-chemical principles involved and practical applications and significance. Chapters on Water and Fuels also contain systematic methods of solving problems on Water Treatment and Combustion Calculations followed by several worked out examples. Further, at the end, enquiring questions on all the chapters are given which also include typical objective questions and answers. A list of reference books has also been included at the end, under bibliography.

This book is written solely with a conviction to severe the academic and professional requirements of the students of all branches of engineering.

Any suggestions and constructive criticism towards this objective are welcome.

Jan. 1986

AUTHOR
I wish to express my gratitute to late Prof. S. S. Dara (Prime author of this book) the former, Head Department of Chemistry of our Institution who was the source of inspiration for review of this book.

I sincerely acknowledge the encouragement, moral support and valuable suggestion of all of the following.

Prof. S. S. Gokhle, Director, VNIT Nagpur. Prof. M. C. Gupta, Prof. S. G. Viswanath of Nagpur University. All my colleagues, teaching Engineering Chemistry in VNIT, Nagpur University, Amravati University, and other Universities in Maharashtra and India. Dr. B. M. Rao, Dr. J. D. Ekte, Dr. A. Kumar, Dr. R. K. Kowadkar, Dr. C. Das, Dr. R. T. Jadhav, Dr. S. J. Juneja, Dr. S. B. Gholse, Dr. M. K. N. Yenki., Prof. N. Sulochana NIT Tiruchirappalli, Prof. P. N. Rao NIT Warangal, Dr. A. C. Hegde NIT Suratkal, Dr. R. K, Patel NIT Rourkela, Dr. Masood Alam Jamia Milha Islamia University, New Delhi, Dr. V. K. Srivastava, Institute of Petroleum Technology, Gandhinagar, Dr. S. K. Singh, Institute of Technology, GGU Bilaspur, Dr. Y. Sharma, BHU Varanasi, Prof. A. K. Mishra Sagar University, Dr. Aswar Amravati University. I am duly bound to express my thanks to the authors and publishers of all the books which have been referred during the course of preparation of this revised book. Further, I wish to record my appreciation to Chitriv’s Computers, Nagpur for typing the manuscript.

Last but not least, I wish to express my sincere appreciation to Mrs. Nirmala Gupta, Chairperson cum Managing Director, Shri Navin Joshi V.P. (Publishing) and Shri. Bhagirath Kaushik, General Manager (Sales) S.Chand & Company Ltd. and all the Branch Managers of S. Chand Company Ltd. for their whole hearted cooperation in all aspects of the revised publication and promotion of this book.

AUTHORS
1. WATER TREATMENT

1.1 Introduction 1
1.2 Sources of water 1
1.3 Effect of water on rocks and minerals 3
1.4 Types of impurities present in water 3
1.5 Effect of impurities in natural waters 4
1.6 Methods of treatment of water for domestic and industrial purposes 22
1.7 Removal of dissolved salts 29
1.8 Boiler feed waters (Water for stream making) 58
1.9 Boiler trouble 60
1.10 Cooling waters : Requisites and treatment 69
1.11 Desalination of water 72

2. FUELS AND COMBUSTION

2.1 Definition of a fuel 77
2.2 Classification 77
2.3 Calorific value 78
2.4 Calorific intensity and flame temperature 80
2.5 Flexibility and control 80
2.6 Determination of calorific value of solid and non-volatile liquid fuels 80
2.7 Determination of calorific value of gases and volatile liquid fuels 86
2.8 Criteria for selecting a fuel 87
2.9 Solid fuels 88
2.10 Coal – origin, composition, Analysis 90
2.11 Indian coals and their properties 96
2.12 Classification of coals. 96
2.13 Grading of coals 97
2.14 Characteristics of Coal 97
2.15 Selection of coal 98
2.16 Commercial types of coal 98
2.17 Coal technology 98
2.18 Storage of coal 99
2.19 Pulverised coal 100
2.20 Secondary solid fuels 102
2.21 Combustion of coal 107
2.22 Liquid fuels 107
2.23 Gaseous fuels 141
2.24 Biodiesel 150
2.25 Efficiency of combustion and flue gas analysis, orsat's apparatus 154
2.26 Combustion calculations (ix)
3. NUCLEAR FUELS AND NUCLEAR POWER GENERATION 178–195
3.1 Nuclear Binding Energy 178
3.2 Nuclear Fission 179
3.3 Conditions for Maintaining a Sustaining Chain Reaction 182
3.4 Nuclear Power Reactors 183
3.5 Reactor Concepts 183
3.6 Components of a Nuclear Power Reactor 184
3.7 Breeder Reactors 189
3.8 Nuclear Power Stations in India 190
3.9 Environmental Aspects of Nuclear Power Generation 191
3.10 Energy from Nuclear Fusion 192
3.11 Controlled Thermonuclear Reactors 193
3.12 Environmental Aspects of Thermonuclear Power Generation 195

4. CORROSION 196-237
4.1 Introduction 196
4.2 Nernst Theory 196
4.3 Standard Electrode Potentials 197
4.4 Galvanic Series 198
4.5 Galvanic or Electric Cells 199
4.6 Concentration Cells 200
4.7 Reversible Cells 200
4.8 Polarization 201
4.9 Decomposition Potential 201
4.10 Overvoltage or Over-potential 202
4.11 Corrosion 204

5. LUBRICANTS 238–286
5.1 Historical 238
5.2 Introduction 238
5.3 Surface tension and surface energy 238
5.4 Adsorption 239
5.5 Surface roughness 239
5.6 Surface attraction 239
5.7 Classical laws of friction 240
5.8 Wear 241
5.9 Lubrication 242
5.10 Mechanism of lubrication 243
5.11 Lubricants for extreme ambient conditions and for special applications 247
5.12 Biodegradable lubricants. 249
5.13 Classification of lubricants 250
5.14 Solid lubricants 250
5.15 Semi Solid lubricants 253
5.16 Liquid lubricants 256
5.17 Lubricating emulsions 264
5.18 Properties of lubricants and Tests 265
5.19 Selection of lubricants for different purposes 279
5.20 Methods of lubrication 282
5.21 Degradation of lubricating oils and re-refining 282
8.9 Werner’s Coordination Theory 345
8.10 Hydrogen Bond 346
8.11 Valence Bond Theory 349
8.12 Metallic Bond 357

9. POLYMERS 365–444

9.1 Introduction 365
9.1.1 Classification of Polymers 366
9.1.2 Types of Polymerization 372
9.1.3 Mechanism of Chain Polymerization 373
9.1.4 Serio-specific Polymerization 377
9.1.5 Step Polymerization 378
9.1.6 Polymerizability of a Monomer 378
9.1.7 Thermodynamics of Polymerization Process 378
9.1.8 Practical Methods of Polymerization 379
9.1.9 Molecular Weight of Polymers 381
9.1.10 Engineering and Speciality 383
9.1.11 Electrically Conducting Polymers 384
9.1.12 Photoconductive Polymers 388
9.1.13 Structure Property Relationships in Polymers 390
 9.2 Resins and Plastics 932
 9.2.1 Constituents of Plastics 393
 9.2.2 Fabrication of Plastic Articles 394
 9.2.3 Thermoplastic Resins 396
 9.2.4 Thermoset Resins 407
 9.2.5 Low Dielectric Constant Polymers 418
 9.2.6 Biopolymers 420
 9.2.7 Liquid Crystal Polymers 423
 9.3 Rubbers 425
 9.3.1 Natural Rubber 429
 9.3.2 Synthetic Rubbers 431
 9.4 Flow sheet for Producing Scheme Important Polymers 436

10. COMPOSITE MATERIALS 445–457

10.1 Introduction 445
10.2 Constitution 445
10.3 Classification 448
10.4 (A) Particle-Reinforced Composites 448
10.4 (B) Fibre-Reinforced Composites 448
10.5 Fibre Glass - Reinforced Composites 451
10.6 Other Fibre-Reinforced Composites 451
10.7 Metal Matrix - Fiber Composites 451
10.8 Hybrid Composites 452
10.9 Processing of Fiber - Reinforced Composites 452
10.10 Structural Composites 455
10.11 Applications of Composite Materials 456
11. THERMODYNAMICS EQUILIBRIUM AND KINETICS 458–473

<table>
<thead>
<tr>
<th>11.1 Laws of Thermodynamics</th>
<th>458</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2 Internal Energy (E)</td>
<td>460</td>
</tr>
<tr>
<td>11.3 Enthalpy (H)</td>
<td>460</td>
</tr>
<tr>
<td>11.4 Entropy</td>
<td>462</td>
</tr>
<tr>
<td>11.5 Entropy and Equilibrium</td>
<td>468</td>
</tr>
<tr>
<td>11.6 Gibbs and Helmholtz Free Energy</td>
<td>468</td>
</tr>
<tr>
<td>11.7 Metastable Equilibrium</td>
<td>469</td>
</tr>
<tr>
<td>11.8 Kinetics</td>
<td>470</td>
</tr>
</tbody>
</table>

12. CRYSTAL STRUCTURES 474–484

12.1 Introduction	474
12.2 Fundamental Laws of Crystal Structures	475
12.3 X-rays and Crystal Structure	479
12.4 Bragg’s Law	479
12.5 Types of Imperfections	482
12.6 Discussion of Some Defects	483

13. STRUCTURE OF SOLIDS 485–496

13.1 Crystalline Solids	485
13.2 Amorphous Solids	486
13.3 Types of Solids	486
13.4 Structure of Solids	488
13.5 Magentic Materials	492

14. MECHANICAL PROPERTIES 497–516

<p>| 14.1 Stress and Strain | 497 |
| 14.2 Hooke’s Law | 500 |
| 14.3 Moduli of Elasticity | 501 |
| 14.4 Relation between E (Young’s Modulus) and K (Bulk Modulus) | 501 |
| 14.5 Significance of Modulus of Elasticity | 502 |
| 14.6 Variation of Modulus of Elasticity with Temperature | 502 |
| 14.7 Atomic Basis of Elastic Behaviour | 503 |
| 14.8 Anelastic Behaviour | 505 |
| 14.9 Thermo-elastic Effect | 506 |
| 14.10 Relaxation Process | 507 |
| 14.11 Plastic Deformation | 508 |
| 14.12 Plastic Deformation of a Single Crystal | 509 |
| 14.13 Plastic Deformation of Polycrystalline Metals | 509 |
| 14.14 Twinning | 510 |
| 14.15 Dislocations | 511 |
| 14.16 Visco-elasticity | 512 |
| 14.17 Creep | 513 |
| 14.18 Creep in Metals | 515 |
| 14.19 Creep in Amorphous Materials | 515 |
| 14.20 Effect of Precipitation Particles on Dislocation Motion | 516 |</p>
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>GLASS AND CERAMICS</td>
<td>517–529</td>
</tr>
<tr>
<td>15.1</td>
<td>Glass</td>
<td>517</td>
</tr>
<tr>
<td>15.2</td>
<td>Ceramics</td>
<td>520</td>
</tr>
<tr>
<td>15.3</td>
<td>Methods for Fabrication of Ceramic Ware</td>
<td>524</td>
</tr>
<tr>
<td>15.4</td>
<td>Ceramic Products</td>
<td>525</td>
</tr>
<tr>
<td>15.5</td>
<td>Glazes</td>
<td>528</td>
</tr>
<tr>
<td>15.6</td>
<td>Procelain and Vitreous Enamels</td>
<td>529</td>
</tr>
<tr>
<td>16.</td>
<td>REFRACTORIES</td>
<td>530–552</td>
</tr>
<tr>
<td>16.1</td>
<td>Requisites of a Good Refractory</td>
<td>530</td>
</tr>
<tr>
<td>16.2</td>
<td>Classification of Refractories</td>
<td>530</td>
</tr>
<tr>
<td>16.3</td>
<td>Properties of Refractories</td>
<td>532</td>
</tr>
<tr>
<td>16.4</td>
<td>Raw Materials of Refractories</td>
<td>536</td>
</tr>
<tr>
<td>16.5</td>
<td>Manufacture of Refractories</td>
<td>537</td>
</tr>
<tr>
<td>16.6</td>
<td>Types of Refractory Products</td>
<td>541</td>
</tr>
<tr>
<td>17.</td>
<td>ELECTROPLATING</td>
<td>553–559</td>
</tr>
<tr>
<td>17.1</td>
<td>Applications of Electroplating</td>
<td>553</td>
</tr>
<tr>
<td>17.2</td>
<td>Electroplating Equipment and Operating Conditions</td>
<td>556</td>
</tr>
<tr>
<td>17.3</td>
<td>Electroplating Baths</td>
<td>557</td>
</tr>
<tr>
<td>17.4</td>
<td>Characteristics of Electroplating Wastes</td>
<td>558</td>
</tr>
<tr>
<td>17.5</td>
<td>Safety Precautions</td>
<td>559</td>
</tr>
<tr>
<td>18.</td>
<td>ENVIRONMENTAL CHEMISTRY AND CONTROL OF ENVIRONMENTAL POLLUTION</td>
<td>560–643</td>
</tr>
<tr>
<td>18.1</td>
<td>Environmental Chemistry</td>
<td>560</td>
</tr>
<tr>
<td>18.2</td>
<td>Air Pollution Control</td>
<td>572</td>
</tr>
<tr>
<td>18.3</td>
<td>Water Pollution Control</td>
<td>603</td>
</tr>
<tr>
<td>18.4</td>
<td>Soil pollution.</td>
<td>632</td>
</tr>
<tr>
<td>18.5</td>
<td>Hazardous wastes and Treatment Technologies</td>
<td>634</td>
</tr>
<tr>
<td>19.</td>
<td>NON-CONVENTIONAL ENERGY SOURCES</td>
<td>644–654</td>
</tr>
<tr>
<td>19.1</td>
<td>Sources of Energy</td>
<td>644</td>
</tr>
<tr>
<td>19.2</td>
<td>Other Renewable Energy Sources</td>
<td>653</td>
</tr>
<tr>
<td>20.</td>
<td>POWDER METALLURGY AND ITS INDUSTRIAL APPLICATIONS</td>
<td>655–709</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>660</td>
</tr>
<tr>
<td>20.2</td>
<td>Techniques for Producing Metal Powders</td>
<td>664</td>
</tr>
<tr>
<td>20.3</td>
<td>Characteristics and Properties of Metal Ceramic Powders</td>
<td>668</td>
</tr>
<tr>
<td>20.4</td>
<td>Technological Properties of Powders</td>
<td>679</td>
</tr>
<tr>
<td>20.5</td>
<td>Impurities in Powders</td>
<td>679</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Powders Conditioning</td>
<td>680</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Heat Treatment</td>
<td>682</td>
</tr>
<tr>
<td>20.7</td>
<td>Safety Aspects during Handing of Metal Powders</td>
<td>682</td>
</tr>
<tr>
<td>20.8</td>
<td>Compaction and Shaping</td>
<td>685</td>
</tr>
<tr>
<td>20.9</td>
<td>Sintering</td>
<td>694</td>
</tr>
<tr>
<td>20.10</td>
<td>Important Powder Metallurgy Products and their Industrial Applications</td>
<td>699</td>
</tr>
<tr>
<td>20.11</td>
<td>Conclusion</td>
<td>708</td>
</tr>
</tbody>
</table>
21. BATTERIES AND BATTERY TECHNOLOGY 710–752
21.1 Introduction 711
21.2 Theoretical Principles 712
21.3 Primary Cells 717
21.4 Secondary Batteries 729
21.5 Reserve Batteries 735
21.6 Fuel Cells 740
21.7 Solar Cells 752

22. INSTRUMENTAL TECHNIQUES IN CHEMICAL ANALYSIS 753–797
22.1 Colorimetry and Visible Spectroscopy 753
22.2 Ultraviolet Spectroscopy 761
22.3 Infrared Spectrophotometry 768
22.4 Chromatography 778
22.5 Nuclear Magnetic Resonance (NMR) Spectroscopy 788
22.6 Flame Photometry 792
22.7 Atomic Absorption Spectrometry 794

23. GREEN CHEMISTRY FOR CLEAN TECHNOLOGY 798–816
23.1 Introduction 798
23.2 Goals of green chemistry 798
23.3 Significance of green chemistry 799
23.4 Basic components of green chemistry research 799
23.5 Atom economy 808
23.6 Functional group approaches to green chemistry 809
23.7 Optimization of frameworks for the design of greener synthetic pathways 811
23.8 Industrial Applications of Green Chemistry 812
23.9 Conclusion 815

24. MECHANISM OF ORGANIC REACTIONS 817–855
24.1 Introduction 817
24.2 Electron Displacement Effects 817
24.3 Reaction Mechanism 826
24.4 Energy requirements of a reaction 835
24.5 Types of organic reactions and mechanism 838
24.6 Mechanism of some reactions 850

25. REACTION DYNAMICS & CATALYSIS 856–924
25.1 Introduction 856
25.2 Rate of a reaction or reaction velocity 856
25.3 Reaction rate and time 857
25.4 Factors influencing the reaction rate 857
25.5 Rate law (or rate equation) and rate constant 858
25.6 Measurement of rate of reaction 859
25.7 Order of a reaction 859
25.8 Zero order reaction 861
25.9 Molecularity of a reaction 861
25.10 Pseudo-order reactions 862
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.11</td>
<td>Integrated rate equations</td>
<td>862</td>
</tr>
<tr>
<td>25.12</td>
<td>Reactions involving more than three molecules</td>
<td>874</td>
</tr>
<tr>
<td>25.13</td>
<td>Methods for determination of order of a reaction</td>
<td>874</td>
</tr>
<tr>
<td>25.14</td>
<td>Complex or simultaneous or composite reactions</td>
<td>877</td>
</tr>
<tr>
<td>25.15</td>
<td>Theories of reaction rates</td>
<td>883</td>
</tr>
<tr>
<td>25.16</td>
<td>Effect of temperature on rates of reaction Arrhenius equation</td>
<td>887</td>
</tr>
<tr>
<td>25.17</td>
<td>Activation energy and catalysis</td>
<td>888</td>
</tr>
<tr>
<td>25.18</td>
<td>Examples</td>
<td>889</td>
</tr>
<tr>
<td></td>
<td>CATALYSIS</td>
<td></td>
</tr>
<tr>
<td>25.19</td>
<td>Introduction</td>
<td>901</td>
</tr>
<tr>
<td>25.20</td>
<td>Action of a catalyst</td>
<td>901</td>
</tr>
<tr>
<td>25.21</td>
<td>Characteristics of catalytic reactions (or criteria of catalysis)</td>
<td>901</td>
</tr>
<tr>
<td>25.22</td>
<td>Types of catalysis</td>
<td>904</td>
</tr>
<tr>
<td>25.23</td>
<td>Catalytic promoters</td>
<td>906</td>
</tr>
<tr>
<td>25.24</td>
<td>Catalytic poisons</td>
<td>907</td>
</tr>
<tr>
<td>25.25</td>
<td>Negative catalysis and inhibition</td>
<td>908</td>
</tr>
<tr>
<td>25.26</td>
<td>Autocatalysis</td>
<td>910</td>
</tr>
<tr>
<td>25.27</td>
<td>Induced catalysis</td>
<td>911</td>
</tr>
<tr>
<td>25.28</td>
<td>Activation energy and catalysis</td>
<td>911</td>
</tr>
<tr>
<td>25.29</td>
<td>Theories of catalysis</td>
<td>912</td>
</tr>
<tr>
<td>25.30</td>
<td>Acid-base catalysis</td>
<td>918</td>
</tr>
<tr>
<td>25.31</td>
<td>Enzyme catalysis</td>
<td>921</td>
</tr>
<tr>
<td>25.32</td>
<td>Some industrial processes using catalysts important</td>
<td>922</td>
</tr>
<tr>
<td>25.33</td>
<td>Criteria for choosing a catalyst for industrial application</td>
<td>923</td>
</tr>
<tr>
<td>26.</td>
<td>PHOTOCHEMISTRY</td>
<td>925-947</td>
</tr>
<tr>
<td>26.1</td>
<td>Introduction</td>
<td>925</td>
</tr>
<tr>
<td>26.2</td>
<td>Photochemical reactions</td>
<td>925</td>
</tr>
<tr>
<td>26.3</td>
<td>Laws of Photochemistry</td>
<td>926</td>
</tr>
<tr>
<td>26.4</td>
<td>Quantum efficiency</td>
<td>927</td>
</tr>
<tr>
<td>26.5</td>
<td>High and low quantum yields</td>
<td>931</td>
</tr>
<tr>
<td>26.6</td>
<td>Mechanism of some photochemical reactions</td>
<td>931</td>
</tr>
<tr>
<td>26.7</td>
<td>Photosynthesis</td>
<td>935</td>
</tr>
<tr>
<td>26.8</td>
<td>Types of photochemical reactions</td>
<td>936</td>
</tr>
<tr>
<td>26.9</td>
<td>Apparatus for photochemical studies</td>
<td>937</td>
</tr>
<tr>
<td>26.10</td>
<td>Applications of photochemistry in technology</td>
<td>938</td>
</tr>
<tr>
<td>26.11</td>
<td>Photochemistry of vision</td>
<td>938</td>
</tr>
<tr>
<td>26.12</td>
<td>Photosynthesis and Bioenergetics</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>QUESTION BANK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPENDIX-1 : El Nino Phenomenon and Its Effects</td>
<td>963-964</td>
</tr>
<tr>
<td></td>
<td>APPENDIX-2 : Basic Principles of Green Chemistry</td>
<td>965-965</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>966-968</td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>969-972</td>
</tr>
</tbody>
</table>
1

Water Treatment

“Water is one of the most abundant commodities in nature, but is also the most misused one.”

1.1. INTRODUCTION

One of the basic necessities of life is water. Living things exist on the earth because this is the only planet that has the presence of water. Water is necessary for the survival of all living things be it plant or animal life.

Water is one of the most abundant commodities in nature but is also the most misused one. Although earth is a blue planet and 80% of its surface is covered by water, the hard fact of life is that about 97% of it is locked in the oceans, and sea which is too saline to drink and for direct use for agricultural or industrial purposes. 2.4 % is trapped in polar ice caps and giant glaciers, from which icebergs break off and slowly melt at sea. >1% water is used by man for various development, industrial, agricultural, steam generation domestic.

1.2. SOURCES OF WATER

Water is required for agricultural, municipal and industrial purposes. For industrial purposes, natural waters may be broadly divided into the following categories:

1. Surface waters:
 (a) Flowing waters e.g., streams and rivers (Moorland surface drainage)
 (b) Still waters e.g., ponds, lakes and reservoirs (Lowland surface drainage)

2. Underground water: Water from shallow and deep springs and wells

3. Rainwater

4. Estuarine and sea water

From the point of view of industrial applications, it is not usually feasible to use rain water and sea water. Rain water is irregular in supply and generally expensive to collect. Estuarine and sea waters are too saline for most industrial uses except cooling. The three major sources of water for industrial use are

(a) Moorland surface drainage.
(b) Lowland surface drainage.
(c) Deep well water.

The important properties of these three types of waters are given in Table – 1.
A Textbook Of Engineering Chemistry

Publisher: SChand Publications ISBN: 9788121903592

Author: S. S. Dara, S. S. Umare

Type the URL: http://www.kopykitab.com/product/11801

Get this eBook 20% OFF
The text of the book covers the complete syllabus of the subject “Engineering Drawing (Graphics) of various Technical Universities all over the country and is also linked...” We use cookies to offer you a better experience, personalize content, tailor advertising, provide social media features, and better understand the use of our services. To learn more or modify/prevent the use of cookies, see our Cookie Policy and Privacy Policy. Accept Cookies.