Chemical Engineering Books of Interest

*Cascio* • ISO 14000 GUIDE: THE NEW INTERNATIONAL ENVIRONMENTAL MANAGEMENT STANDARDS
*Chopey* • HANDBOOK OF CHEMICAL ENGINEERING CALCULATIONS, SECOND EDITION
*Chopey* • INSTRUMENTATION AND PROCESS CONTROL
*Connell* • PROCESS INSTRUMENTATION PROCESS MANUAL
*Fitzgerald* • CONTROL VALVES FOR THE CHEMICAL PROCESS INDUSTRIES
*Fleming/Pillai* • S88 IMPLEMENTATION GUIDE
*Lieberman/Lieberman* • A WORKING GUIDE TO PROCESS EQUIPMENT
*Luyben/Tyreus/Luyben* • PLANTWIDE PROCESS CONTROL
*Meyers* • PETROLEUM REFINING PROCESSES, SECOND EDITION
*Miller* • FLOW MEASUREMENT ENGINEERING HANDBOOK, THIRD EDITION
*Perry/Green* • PERRY’S CHEMICAL ENGINEERS’ HANDBOOK, SEVENTH EDITION
*Sawers/Eastman* • PROCESS INDUSTRY PROCEDURES AND TRAINING MANUAL
*Schweitzer* • HANDBOOK OF SEPARATION TECHNIQUES FOR CHEMICAL ENGINEERS, THIRD EDITION
*Shinskey* • PROCESS CONTROLLERS FOR THE PROCESS INDUSTRIES
*Shinskey* • PROCESS CONTROL SYSTEMS, FOURTH EDITION
*Woodside/Aurichio/Yturri* • ISO 14001 IMPLEMENTATION MANUAL
*Yaws* • CHEMICAL PROPERTIES HANDBOOK
CONTENTS

Section 1. INTRODUCTORY REVIEW 1.1

Section 2. CONTROL SYSTEM FUNDAMENTALS 2.1
Control Principles / 2.4
Techniques for Process Control / 2.30
Basic Control Algorithms / 2.57
Safety in Instrumentation and Control Systems / 2.83

Section 3. CONTROLLERS 3.1
Distributed Control Systems / 3.6
Programmable Controllers / 3.32
Stand-Alone Controllers / 3.50
Hydraulic Controllers / 3.57
Batch Process Control / 3.70
Automatic Blending Systems / 3.85
Distributed Numerical Control and Networking / 3.91
Computers and Controls / 3.100
Manufacturing Message Specification / 3.134
Field-Based Systems / 3.162

Section 4. PROCESS VARIABLES—FIELD INSTRUMENTATION 4.1
Temperature Systems / 4.8
Fluid Pressure Systems / 4.47
Industrial Weighing and Density Systems / 4.188
Humidity and Moisture Systems / 4.194

Section 5. GEOMETRIC AND MOTION SENSORS 5.1
Metrology, Position, Displacement, Thickness and Surface Texture Measurement / 5.5
Magnetostrictive Linear Position Sensors / 5.38
Object Detectors and Machine Vision / 5.65
Flat Web (Sheet) Measurement and Control / 5.92
Speed, Velocity and Acceleration Instrumentation / 5.96
Vibration Measurement / 5.111

Section 6. REAL-TIME ANALYTICAL COMPOSITION MEASUREMENTS FOR INPUT TO PROCESS CONTROL 6.1
Introduction / 6.6
Concentration Measurement Technology and Devices / 6.10
pH Measurement: Theory and Reality / 6.23
Optical Concentration Transducers / 6.55
CONTENTS

Section 7. CONTROL COMMUNICATIONS

Data Signal Handling in Computerized Systems / 7.2
Noise and Wiring in Data Signal Handling / 7.27
Industrial Control Networks / 7.54

Section 8. OPERATOR INTERFACE

Operator Interface—Design Rationale / 8.2
Cognitive Skills and Process Control / 8.11
Distributed Display Architecture / 8.22
Knowledge-Based Operator Training / 8.31
Intelligent Alarms / 8.37

Section 9. VALVES, SERVOS, MOTORS, AND ROBOTS

Process Control Valves / 9.5
Control Valve Cavitation: An Overview / 9.63
Control Valve Noise / 9.75
Servomotor Technology in Motion Control Systems / 9.82
Solid-State Variable Speed Drives / 9.107
Robots / 9.123
Current-to-Pressure Transducers for Control-Valve Actuation / 9.139

Section 10. PROCESS CONTROL IMPROVEMENT

World-Class Manufacturing / 10.7
Plant Analysis, Design, and Tuning for Uniform Manufacturing / 10.17
Control Valve Response / 10.61
Process Impact / 10.70
Best Practices, Tools, and Techniques to Reduce the Maintenance Costs of Field Instrumentation / 10.86
New Developments in Analytical Measurements / 10.107
Fundamentals of the Quantitative NMR / 10.135
The Improvement of Advanced Regulatory Control Systems / 10.170
Multivariable Predictive Control and Real-time Optimization / 10.190
Neural Networks / 10.222

Section 11. STANDARDS OVERVIEW

Safety Instrumented (Interlock) Systems / 11.2
An Overview of the ISA/IEC Fieldbus / 11.14
Batch Control: Applying the S88.01 Standard / 11.38

Index / I.1
A programmable logic controller (PLC) or programmable controller is an industrial digital computer which has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, or robotic devices, or any activity that requires high reliability control and ease of programming and process fault diagnosis. PLCs were first developed in the automobile manufacturing industry to provide flexible, ruggedized and easily programmable controllers to replace hard-wired relays, timers