WATER SUPPLY
AND POLLUTION CONTROL
Seventh Edition

Warren Viessman, Jr.
University of Florida
Mark J. Hammer
Lincoln, Nebraska

PEARSON
Upper Saddle River, NJ 07458
Contents

Preface xvii

Chapter 1 Introduction 1
 1.1 Drinking Water Systems 1
 1.2 Drainage and Sewerage Systems 3
 References 5

Chapter 2 Water Management 6
 2.1 From Projects to Issues 6
 2.2 Institutions 7
 2.3 Integrated Water Management 8
 2.4 Roadblocks to Be Overcome 10
 2.5 Environmental Regulation and Protection 10
 2.6 Effects of Environmental Regulations 15
 2.7 A Look to the Future 16
 2.8 Conclusions 18
 Problems 18
 References 18

Chapter 3 Water Resources Development 20
 Water Quantity 20
 3.1 Soil Moisture 21
 3.2 Surface Waters and Groundwater 21
 3.3 Runoff Distribution 22
 3.4 Groundwater Distribution 22
 Water Quality 24
 3.5 Groundwater 26
 3.6 Surface Water 26
 Hydrology and Water Management 26
 3.7 The Water Budget 27
 Surface Water Sources 28
 3.8 Basin Characteristics Affecting Runoff 28
Contents

3.9 Natural and Regulated Runoff 28
3.10 Storage 29

Reservoirs 29
3.11 Determination of Required Reservoir Capacity 30
3.12 Methods of Computation 30
3.13 Frequency of Extreme Events 32
3.14 Probabilistic Mass Type of Analysis 33
3.15 Losses from Storage 34

Groundwater 36
3.16 The Subsurface Distribution of Water 36
3.17 Aquifers 37
3.18 Fluctuations in Groundwater Level 37
3.19 Safe Yield of an Aquifer 39
3.20 Groundwater Flow 39
3.21 Hydraulics of Wells 44
3.22 Boundary Effects 55
3.23 Regional Groundwater Systems 56
3.24 Salt Water Intrusion 59
3.25 Groundwater Recharge 60
3.26 Concurrent Development of Groundwater and Surface Water Sources 61
3.27 Aquifer Storage and Recovery (ASR) 62

Problems 63
References 67

Chapter 4 Water Use 69
4.1 Water Sources 69
4.2 Water-Using Sectors 72
4.3 The Impact of Climate Change on Water Availability and Use 81
4.4 Water Use Trends 83
4.5 Factors Affecting Water Use 88
4.6 Population 89
4.7 Water Use Forecasting 100

Problems 100
References 111

Chapter 5 Wastewater Generation 117
5.1 Quantities of Wastewater 117
5.2 Waste Flows from Urban Areas 117
5.3 Industrial Waste Volumes 122
5.4 Agricultural Wastes 123
5.5 A Closing Note 123

Problems 123
References 124
Chapter 6 Conveying and Distributing Water 126

6.1 Aqueducts 126
6.2 Hydraulic Considerations 127
6.3 Design Considerations 138

 Distribution Systems 139
 6.4 System Configurations 139
 6.5 Distribution System Components 140
 6.6 System Requirements 144
 6.7 Distribution System Design and Analysis 144
 6.8 Hydraulic Design 147
 6.9 Network Modeling Software 170
 6.10 Distribution Reservoirs and Service Storage 185

 Pumping 193
 6.11 Pumping Head 193
 6.12 Power 193
 6.13 Cavitation 194
 6.14 System Head 195
 6.15 Pump Characteristics 195
 6.16 Selection of Pumps 197
 Problems 199
 References 206

Chapter 7 Wastewater and Storm Water Systems 208

 Hydraulics 208
 7.1 Uniform Flow 209
 7.2 Gradually Varied Flow and Surface Profiles 213
 7.3 Velocity 217
 Design of Sanitary Sewers 218
 7.4 House and Building Connections 218
 7.5 Collecting Sewers 219
 7.6 Intercepting Sewers 219
 7.7 Materials 220
 7.8 System Layout 221
 7.9 Hydraulic Design 223
 7.10 Protection Against Floodwaters 231
 7.11 Inverted Siphons 231
 7.12 Wastewater Pumping Stations 232
 Storm Water Management 233
 7.13 Alternative Strategies 233
 Water Quality 233
 7.14 Best Management Practices 235
 7.15 Treatment Processes 236
 Water Quantity 236
 7.16 Hydrologic Considerations 237
 7.17 Design Flow 237
Chapter 8 Water Quality 286

Microbiological Quality 286
8.1 Waterborne Diseases 287
8.2 Coliform Bacteria as Indicator Organisms 291
Chemical Quality of Drinking Water 294
8.3 Monitoring Drinking Water for Pathogens 295
8.4 Assessment of Chemical Quality 296
8.5 Chemical Contaminants 299
Quality Criteria for Surface Waters 308
8.6 Water Quality Standards 308
8.7 Pollution Effects on Aquatic Life 309
8.8 Conventional Water Pollutants 310
8.9 Toxic Water Pollutants 313
Selected Pollution Parameters 316
8.10 Total and Suspended Solids 316
8.11 Biochemical and Chemical Oxygen Demands 317
8.12 Coliform Bacteria 322
Problems 325
References 328

Chapter 9 Systems for Treating Wastewater and Water 330

Wastewater Treatment Systems 330
9.1 Purpose of Wastewater Treatment 331
9.2 Selection of Treatment Processes 332
Water Treatment Systems 339
9.3 Water Sources 339
9.4 Selection of Water Treatment Processes 343
9.5 Water-Processing Sludges 347

Chapter 10 Physical Treatment Processes 351

Flow-Measuring Devices 351
10.1 Measurement of Water Flow 351
10.2 Measurement of Wastewater Flow 352
Screening Devices 354
10.3 Water-Intake Screens 354
10.4 Screens in Wastewater Treatment 354
10.5 Shredding Devices 355
Hydraulic Characteristics of Reactors 355
Chapter 10

10.6 Residence Time Distribution 356
10.7 Ideal Reactors 357
10.8 Dispersed Plug Flow 361
Mixing and Flocculation 365
10.9 Rapid Mixing 365
10.10 Flocculation 366

Sedimentation 370
10.11 Fundamentals of Sedimentation 370
10.12 Types of Clarifiers 371
10.13 Sedimentation in Water Treatment 374
10.14 Sedimentation in Wastewater Treatment 377
10.15 Grit Chambers in Wastewater Treatment 382

Filtration 384
10.16 Gravity Granular-Media Filtration 384
10.17 Description of a Typical Gravity Filter System 387
10.18 Flow Control Through Gravity Filters 392
10.19 Head Losses Through Filter Media 398
10.20 Backwashing and Media Fluidization 401
10.21 Pressure Filters 407
10.22 Membrane Filtration 407

Problems 411
References 416

Chapter 11

Chemical Treatment Processes 418

Chemical Considerations 418
11.1 Inorganic Chemicals and Compounds 419
11.2 Hydrogen Ion Concentration 423
11.3 Alkalinity and pH Relationships 424
11.4 Chemical Equilibria 425
11.5 Ways of Shifting Chemical Equilibria 426
11.6 Chemical Process Kinetics 427
11.7 Colloidal Dispersions 432

Water Coagulation 435
11.8 Coagulation Process 435
11.9 Coagulants 437
11.10 Polymers 441

Water Softening 442
11.11 Chemistry of Lime–Soda Ash Process 442
11.12 Process Variations in Lime–Soda Ash Softening 444
11.13 Cation Exchange Softening 454

Iron and Manganese Removal 455
11.14 Chemistry of Iron and Manganese 455
11.15 Preventive Treatment 456
11.16 Iron and Manganese Removal Processes 457

Chemical Disinfection and By-Product Formation 459
11.17 Chemistry of Chlorination 459
11.18 Chlorine Dioxide 463
11.19 Ozone 464
11.20 Disinfection By-Products 465
11.21 Control of Disinfection By-Products 467
11.22 Disinfection/Disinfection By-Products Rule 468

Disinfection of Potable Water 468
11.23 Concept of the C·t Product 469
11.24 Surface Water Disinfection 472
11.25 Groundwater Disinfection 476

Disinfection of Wastewater 481
11.26 Conventional Effluent Disinfection 481
11.27 Tertiary Effluent Disinfection 484

Taste and Odor 486
11.28 Control of Taste and Odor 486
Fluoridation 487
11.29 Fluoridation 488

Corrosion and Corrosion Control 489
11.30 Electrochemical Mechanism of Iron Corrosion 489
11.31 Corrosion of Lead Pipe and Solder 490
11.32 Corrosion of Sewer Pipes 491

Reduction of Dissolved Salts 492
11.33 Distillation of Seawater 492
11.34 Reverse Osmosis 494

Volatile Organic Chemical Removal 500
11.35 Design of Air-Stripping Towers 500
Synthetic Organic Chemical Removal 503
11.36 Activated Carbon Adsorption 504
11.37 Granular Activated Carbon Systems 505

Problems 506
References 517

Chapter 12 Biological Treatment Processes 520

Biological Considerations 520
12.1 Bacteria and Fungi 521
12.2 Algae 522
12.3 Protozoans and Higher Animals 523
12.4 Metabolism, Energy, and Synthesis 524
12.5 Enzyme Kinetics 527
12.6 Growth Kinetics of Pure Bacterial Cultures 529
12.7 Biological Growth in Wastewater Treatment 533
12.8 Factors Affecting Growth 535
12.9 Population Dynamics 537

Characteristics of Wastewater 541
12.10 Flow and Strength Variations 542
12.11 Composition of Wastewater 545

Trickling (Biological) Filters 548
Chapter 12

12.12 Biological Process in Trickling Filtration 549
12.13 Trickling-Filter Operation and Filter Media Requirements 550
12.14 Trickling-Filter Secondary Systems 552
12.15 Efficiency Equations for Stone-Media Trickling Filters 555
12.16 Efficiency Equations for Plastic-Media Trickling Filters 560
12.17 Combined Trickling-Filter and Activated-Sludge Processes 569
12.18 Description of Rotating Biological Contactor Media and Process 570

Activated Sludge 572
12.19 BOD Loadings and Aeration Periods 573
12.20 Operation of Activated-Sludge Processes 577
12.21 Activated-Sludge Treatment Systems 578
12.22 Kinetics Model of the Activated-Sludge Process 591
12.23 Laboratory Determination of Kinetic Constants 596
12.24 Application of the Kinetics Model in Process Design 601
12.25 Oxygen Transfer and Oxygenation Requirements 605
12.26 Determination of Oxygen Transfer Coefficients 610

Stabilization Ponds 616
12.27 Description of a Facultative Pond 616
12.28 BOD Loadings of Facultative Ponds 618
12.29 Advantages and Disadvantages of Stabilization Ponds 619
12.30 Completely Mixed Aerated Lagoons 621

Odor Control 625
12.31 Sources of Odors in Wastewater Treatment 625
12.32 Methods of Odor Control 626

Individual On-Site Wastewater Disposal 628
12.33 Septic Tank-Absorption Field System 628

Marine Wastewater Disposal 629
12.34 Ocean Outfalls 629

Problems 631
References 642

Chapter 13

Processing of Sludges 644

Sources, Characteristics, and Quantities of Waste Sludges 644
13.1 Weight and Volume Relationships 645
13.2 Characteristics and Quantities of Wastewater Sludges 648
13.3 Characteristics and Quantities of Water-Processing Sludges 655

Arrangement of Unit Processes in Sludge Disposal 658
13.4 Selection of Processes for Wastewater Sludges 658
13.5 Selection of Processes for Water Treatment Sludges 664

Gravity Thickening 668
13.6 Gravity Sludge Thickeners in Wastewater Treatment 668
13.7 Gravity Sludge Thickeners in Water Treatment 670

Gravity Belt Thickening 671
13.8 Description of a Gravity Belt Thickener 672
13.9 Layout of a Gravity Belt Thickener System 672
13.10 Sizing of Gravity Belt Thickeners 674
Flotation Thickening 677
13.11 Description of Dissolved-Air Flotation 678
13.12 Design of Dissolved-Air Flotation Units 679
Biological Sludge Digestion 681
13.13 Anaerobic Sludge Digestion 681
13.14 Single-Stage Floating-Cover Digesters 682
13.15 High-Rate (Completely Mixed) Digesters 684
13.16 Volatile Solids Loadings and Digester Capacity 686
13.17 Aerobic Sludge Digestion 690
13.18 Open-Air Drying Beds 694
13.19 Composting 695
Pressure Filtration 697
13.20 Description of Belt Filter Press Dewatering 697
13.21 Application of Belt Filter Dewatering 700
13.22 Sizing of Belt Filter Presses 702
13.23 Description of Filter Press Dewatering 704
13.24 Application of Pressure Filtration 706
Centrifugation 708
13.25 Description of Centrifugation 708
13.26 Applications of Centrifugation 710
Cycling of Waste Solids in Treatment Plants 715
13.27 Suspended-Solids Removal Efficiency 715
Final Disposal or Use 717
13.28 Land Application 718
13.29 Codisposal in a Municipal Solid-Waste Landfill 723
13.30 Surface Land Disposal 724
Problems 724
References 734

Chapter 14 Advanced Wastewater Treatment Processes and Water Reuse 736

Limitations of Secondary Treatment 737
14.1 Effluent Standards 737
14.2 Flow Equalization 739
Selection of Advanced Wastewater Treatment Processes 741
14.3 Selecting and Combining Unit Processes 742
Suspected-Solids Removal 743
14.4 Granular-Media Filtration 743
14.5 Direct Filtration with Chemical Coagulation 747
Carbon Adsorption 749
14.6 Granular-Carbon Columns 749
14.7 Activated-Sludge Treatment with Powdered Activated Carbon 750
Phosphorus Removal 751
14.8 Biological Phosphorus Removal 752
14.9 Biological-Chemical Phosphorus Removal 753
14.10 Tracing Phosphorus Through Treatment Processes 757
Nitrogen Removal 760
14.11 Tracing Nitrogen Through Treatment Processes 761
14.12 Biological Nitrification 763
14.13 Biological Denitrification 771
14.14 Single-Sludge Biological Nitrification-Denitrification 775
14.15 Water Quality and Reuse Applications 781
14.16 Agricultural Irrigation 788
14.17 Agricultural Irrigation Reuse, Tallahassee, Florida 795
14.18 Citrus Irrigation and Groundwater Recharge, Orange County and City of Orlando, Florida 802
14.19 Urban Reuse 806
14.20 Urban Reuse, St. Petersburg, Florida 807
14.21 Indirect Reuse to Augment Drinking Water Supply 811
14.22 Fred Hervey Water Reclamation Plant, El Paso, Texas 814
14.23 Direct Injection for Potable Supply, El Paso, Texas 817
14.24 Water Factory 21 and Groundwater Replenishment System, Orange County, California 822

Problems 830
References 841

Appendix 844
Index 855
Prevention of Water Pollution: Know control measures of water pollution, ways to reduce it, steps to prevent it, and how to stop water pollution. How to Control Water Pollution. Water is the basis of the life of all living beings. With the development of modern human civilization, the problem of water pollution has become a serious issue. There is a growing trend of industrialization and urbanization. The villages are fast being transformed into cities and urban clusters with the establishment of various industries in and around, leading to over-exploitation and contamination of water resources.